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Abstract—5G (and future 6G) networks bring unprecedented 
benefits, such as softwarisation and edge processing capabilities, 
which yet also widen the attack surface, making the network more 
prone to cyberattacks and calling for more sophisticated security 
controls. We demonstrate an approach for combined collection 
and processing of monitoring metrics from the RAN and the edge. 
Processing and analytics are based on Deep Learning, with the 
aim of detecting anomalies and identifying attacks both to the edge 
application as well as the infrastructure. Our approach uses 
bidirectional LSTMs to yield quite promising results, operating in 
real time in a full-stack 5G testbed. 
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I. INTRODUCTION 
5G comes with a new rich set of features and 

capabilities[1], which are very important, but also they 
generate new vulnerabilities in 5G networks. A lot of 5G 
applications track personal data, or support critical 
operations[2]. A lot of work has been done about security 
[3][5] and existing vulnerabilities [4] in 5G networks. The 
concept of 5G Security Analytics, which is addressed in this 
paper, is to collect and join data from all structures in a 5G 
network and analyses them as time series metrics, using AI 
techniques. In such way zero-day attacks and attacks in very 
early stages can also be identified. In this context, this paper 
presents a framework to detect anomalies and identify attacks 
using Biderectional LSTMs implemented and evaluated in a 
full-stack 5G testbed 

II. BACKGROUND AND RELATED WORK 

A. Background 
The Autoencoder is a popular approach for detecting, 

among others, anomalies in time-series data. Autoencoders 
are usually trained in normal data. Autoencoders compress 
taken input data into a smaller representation and then they 
decompress them into their original form with an error. If this 
error is above a threshold then the given input can be 
considered as an anomaly. Long Short-Term Memory 
(LSTM) networks are a type of recurrent neural networks 
(RNN) capable of learning order dependence in sequence 

prediction problems, such as the ones involving time-series 
data [5].  

III. TESTBED ARCHITECTURE AND COMPONENTS 

A. Overview 
The architecture of our testbed consists of three nodes, as 

it is shown in Fig.1. The main node of 5G infrastructure is the 
5G gNB. There is an Edge compute node, where 5G edge-
based applications are deployed and running. Finally, there is 
a third compute node where the storage, the visualization and 
the anomaly detection functions are deployed. Our anomaly 
detection pipeline collects metrics from two different data 
sources (RAN/gNB and Edge node), predicting which of these 
metrics are part of an anomaly and visualizes the detected 
anomalies in a web interface. Prometheus is used for 
collecting data and InfluxDB for storing them. 

B. Data Collection 
The Data collection component consists of two data 

collectors, Amari Exporter, which retrieves metrics from the 
Amarisoft RAN (gNB) periodically through sockets and the 

Node Exporter, which is responsible for collecting system 
metrics from the Edge node. Collected metrics from both 
exporters are saved in Prometheus in Edge node. The Node 
Exporter is a Prometheus component for collecting Linux 
system metrics from Edge node. The Amari Exporter is also 
running in Edge node. It was developed specifically for the 
needs of the present work, to collect gNB metrics. Both the 
Amari Exporter and the Node Exporter are written in Go 
programming language. 

C. Data Storage & Visualization 
The Data storage & visualization component is 

responsible for fetching collected data from collectors, 
transforming and store them. In addition, it provides a UI for 
visualization of the collected metrics and alerts. Prometheus is 
responsible for collecting and transforming data. They stored  
to an InfluxDB. For the visualization of collected metrics and 
detected anomalies, a web user interface has been created 
using Grafana (Fig.2), which monitors the usage of edge node 
and shows all detected anomalies. 

 
Fig. 1.Testbed architecture and components 

 
 
 

 
Fig. 2.Grafana User Interface for monitoring 

 



D. Anomaly Detection Component 
For the Anomaly Detection Component, the Autoencoder 

architecture has been selected. It consists of three parts: an 
Encoder with 5 Bidirectional LSTMs, a Decoder with 4 
Bidirectional LSTMs and a Fully Connected layer. For our 
model, the following features have been selected: CPU and 
memory usage from edge node, gNB RX/TX processes CPU 
usage, edge node Tx/Rx rate in each network interface and 
gNB radio Tx/Rx rates. For training this model Stochastic 
Gradient Descent (SGD) with Nesterov momentum has been 
selected as optimizer, with learning rate equal to 0.01 and 
ReLU as activation function for 50 epochs. For training, we 
have created a “normal” dataset, for which we have used two 
UEs (smartphones) with a mixed Internet usage pattern, 
running over approx. 30 hours.  If the RMSE between the 
predicted and actual value is above the set threshold, this 
record is considered as an anomaly and will be shown in UI 
along with a proposal about what metric may cause this 
anomaly. The Anomaly Detection Component has also a 
feature to propose deviation thresholds for each metric, based 
on 99th percentile of evaluation data. The Autoencoder is 
developed in Python using Keras with Tensorflow backend.

 

IV. EVALUATION 
For evaluating the algorithm and the pipeline as a whole, 

in real time under actual network operation, three different 
evaluation scenarios are considered. The first scenario 
corresponds to the normal network behaviour, with two UEs 
under normal user activity. The second and third scenario 
correspond to two different types of attacks to the 5G 
infrastructure and services. More specifically, the second 
scenario corresponds to a CPU overload (Infrastructure 
compromise). The third scenario emulates an eavesdropping 
incident (Service compromise). Fig.3 shows the results from 
the first scenario, with normal traffic. In left figure the RMSE 
for edge’s metrics is visualized. Right figure shows the same 
error for 5G gNB metrics. Fig.4 shows the prediction error in 
second scenario, which is a CPU overload attack, emulating 
an infrastructure   compromise scenario. The two peaks in the 
plot show the start and the end of the CPU overload attack. So, 
the trained Autoencoder correctly detects the attack and the 
corresponding anomaly entries are inserted in Influx DB and 
shown in Grafana UI. Finally, in Fig.5 the results of the third 
scenario are shown, emulating a service compromise scenario 
(eavesdropping). It can be seen in these two plots that the 
anomaly has been correctly detected and is temporally aligned 
with the actual incident. As shown in all figures above, in most 

cases Autoencoder can detect normal traffic with small error 
and very few false positives, producing very few false alarms.  

 

 

V. CONCLUSION AND FUTURE WORK 
This paper describes a proposal for an anomaly detection 

pipeline for 5G infrastructures, which has as its basis LSTMs 
following the Autoencoder architecture. This pipeline was 
evaluated in real time in a fully functional 5G network with 
over-the-air tests. The data collection, anomaly detection and 
visualisation modules have been released as open-source 
(https://github.com/5genesis/Security-Framework ) as part of 
the 5G experimentation enabler framework 
(“Open5GENESIS”). As future steps, we plan to include more 
metrics from more network elements (including the 5G Core 
functions), as well as to conduct tests with more types of 
attacks. 

ACKNOWLEDGMENT 
The work described in this paper has received funding 

from the European Union’s Horizon 2020 research and 
innovation programme under grant agreements No 815178 
(5GENESIS) and No 883335 (PALANTIR). 

REFERENCES 
[1] E. Hajlaoui, A. Zaier, A. Khlifi, J. Ghodhbane, M. B. Hamed and L. 

Sbita, "4G and 5G technologies: A Comparative Study," 2020 5th 
International Conference on Advanced Technologies for Signal and 
Image Processing (ATSIP), Sousse, Tunisia, 2020, pp. 1-6. 

[2] Szalay, Z., Ficzere, D., Tihanyi, V., Magyar, F., Soós, G., & Varga, P. 
(2020). 5G-enabled autonomous driving demonstration with a V2X 
scenario-in-the-loop approach. Sensors, 20(24), 7344. 

[3] 5G Security Landscape, June 2017, 5G-PPP, https://5g-ppp.eu/wp-
content/uploads/2014/02/5G-PPP_White-Paper_Phase-1-Security-
Landscape_June-2017.pdf 

[4] ENISA Threat Landscape for 5G Networks [Online], Available: 
https://www.enisa.europa.eu/publications/enisa-threat-landscape-for-
5g-networks  

[5] Gers, Felix & Eck, Douglas & Schmidhuber, Jürgen. (2001). Applying 
LSTM to Time Series Predictable through Time-Window Approaches. 
Recent Advancements, and Future Directions," in IEEE 
Communications Surveys & Tutorials, vol.22, no.1, pp. 196-248, 2020. 

 

 

Fig. 3.Prediction Error in normal Data: Edge metrics (left) 
and 5G metrics (right) 

 

 

 
Fig. 4.Prediction Error in CPU Overload Scenario 

 
 

 
Fig. 5.Prediction Error in Eavesdropping Scenario: 

Edge metrics (left) and  5G metrics(right) 

 
 

 


