
5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 1 of 74

Deliverable D3.8

Open APIs, service level functions
and interfaces for verticals
(Release B)

Editor Elisa Jimeno (ATOS)

Contributors ATOS(Atos Spain SA), UMA(Universidad de Málaga),
LMI(L.M. Ericsson Limited), UNIS(University of Surrey),
INTEL (INTEL Deutschland GmbH), NEMERGENT
(Nemergent Solutions SL), NCSRD (NATIONAL CENTER
FOR SCIENTIFIC RESEARCH “DEMOKRITOS”), FhG
(FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNGDER
ANGEWANDTEN FORSCHUNG E.V)

Version 1.0

Date March, 28th 2021

Distribution PUBLIC (PU)

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 2 of 74

List of Authors

ATOS ATOS SPAIN

Elisa Jimeno, Javier Melian, Luis Gomez

UMA University of Malaga

Bruno Garcia

FRAUNHOFER Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

A. Prakash

NCSRD National Center For Scientific Research “DEMOKRITOS”

H. Koumaras

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 3 of 74

Disclaimer

The information, documentation and figures available in this deliverable are written by the
5GENESIS Consortium partners under EC co-financing (project H2020-ICT-815178) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 4 of 74

Copyright

Copyright © 2021 the 5GENESIS Consortium. All rights reserved.

The 5GENESIS Consortium consists of:

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” Greece

AIRBUS DS SLC France

ATHONET SRL Italy

ATOS SPAIN SA Spain

AVANTI HYLAS 2 CYPRUS LIMITED Cyprus

AYUNTAMIENTO DE MALAGA Spain

COSMOTE KINITES TILEPIKOINONIES AE Greece

EURECOM France

FOGUS INNOVATIONS & SERVICES P.C. Greece

FON TECHNOLOGY SL Spain

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG
E.V.

Germany

IHP GMBH – INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS/LEIBNIZ-
INSTITUT FUER INNOVATIVE MIKROELEKTRONIK

Germany

INFOLYSIS P.C. Greece

INSTITUTO DE TELECOMUNICACOES Portugal

INTEL DEUTSCHLAND GMBH Germany

KARLSTADS UNIVERSITET Sweden

L.M. ERICSSON LIMITED Ireland

MARAN (UK) LIMITED UK

MUNICIPALITY OF EGALEO Greece

NEMERGENT SOLUTIONS S.L. Spain

ONEACCESS France

PRIMETEL PLC Cyprus

RUNEL NGMT LTD Israel

SIMULA RESEARCH LABORATORY AS Norway

SPACE HELLAS (CYPRUS) LTD Cyprus

TELEFONICA INVESTIGACION Y DESARROLLO SA Spain

UNIVERSIDAD DE MALAGA Spain

UNIVERSITAT POLITECNICA DE VALENCIA Spain

UNIVERSITY OF SURREY UK

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the 5GENESIS Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement
of the authors of the document and all applicable portions of the copyright notice must be
clearly referenced.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 5 of 74

Version History

Rev. N Description Author Date

1.0 Release of D3.8 ATOS 31/03/2021

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 6 of 74

LIST OF ACRONYMS

Acronym Meaning

3GPP 3rd Generation Partnership Project

5G 5th Generation (of mobile communications)

API Application Programming Interface

B2B Business to Business

BSS Business Support System

GA Grant Agreement

CA Consortium Agreement

CAPIF Common API Framework

Dx.y Deliverable Number

DB Data Base

ED Experiment Descriptor

ELCM Experiment Life cycle Manager

EPS Evolved Packet system i.e. 4G, LTE

E-UTRA Evolved Universal Terrestrial Radio Access

ID IDentificator

IT Information Technology

KPI Key Performance Indicators

MANO Management and Orchestration

MBMS Multimedia Broadcast Multicast Services

NFV Network Function Virtualization

NFVO NFV Orchestrator

NRF Network Repository Function

NS Network Service

NSD Network Service Descriptor

Mx Month # of the project work plan (e.g. M2)

NEF Network Exposure Function

NR New radio

OSM Open Source MANO

OSS Operational Support System

REST Representational State Transfer

SBA Service Based Architecture

SBI South-Bound Interface

SCEF Service Capability Exposure Function

SMF Session Management Function

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 7 of 74

Tx.y Task Number

TR Technical Report

TS Technical Specification

UI User Interface

UE User Equipment

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

WPx Work Package Number

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 8 of 74

Executive Summary

The 5GENESIS facility is composed of five experimental Platforms with complementary
features, distributed across Europe. Each one of these Platforms follows a common
reference implementation architecture, that requires an open Application Programming
Interface (API) in order to offer to Experimenters, the required interfaces and common method
to interact with the Facility. Therefore, offered to the broadest possible audience, the APIs
provide interaction with the platforms for the validation of the 5G KPIs uses cases.

The focus of this deliverable is to present the design and implementation of these 5GENESIS
Open APIs (architecture, flow diagram, exposed features, and interfaces) from the final
development of the Release B related to the activities under T3.4 Open API, service level
function and interfaces for verticals.

The 5Genesis Open API is the main interface for Experimenters to define and execute their
experiments. The Dispatcher is the component engine that exposes the Open API and redirects
the request to the required service in the infrastructure. All the requests are secured, thanks
to the authenticator module developed to authenticate the user before the action can be
taken. Key components of the Open APIs architecture include the Validator for NS and ED, and
the Distributor component that validates correct access of Experimenters to offer the
interaction of the Experiment and resources executed.

These interfaces can be interacted by command line for more experience users, but it also
offers a Portal with a friendly Web User Interface (UI) to facilitate the interaction with the
Facility. The Portal itself plays the role of a client of the 5GENESIS Open API and is able to
display the execution logging output from all execution stages of the experiments (Pre-
Run, Run and Post-Run). Besides, for each experiment execution, it provides a link to a
customized experiment specific Grafana dashboard for easy visualization of the data
generated by the experiment. Release B of the Portal, as final implementation is
presented in this deliverable.

In summary, this document presents the endpoints available for the Experimenters to interact

with the 5GENESIS facility, either via the Portal (an abstraction layer and client example of the

Open API), or directly using the Open API.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 9 of 74

Table of Contents

LIST OF ACRONYMS .. 6

1. INTRODUCTION .. 11

2. RELEASE A SUMMARY.. 12

3. OPENAPIS IN 5GENESIS .. 14

 Reference points .. 14

3.1.1. User management operations .. 15

User registration ... 15

Platform registration .. 15

3.1.2. Service catalogue operations .. 15

VNFD/NSD CRUD .. 15

3.1.3. Experiments operations .. 16

Launch experiment ... 16

3.1.4. Results gathering .. 16

Result catalogue ... 16

 Architecture update ... 17

4. DISPATCHER MODULE ... 19

 Authenticator ... 19

Sequence diagrams & requests schema ... 22

 Mano Wrapper .. 34

Open APIs Specifications .. 34

 Distributor .. 34

 ELCM .. 35

Open APIs interfaces ... 35

ED validation ... 37

Experiment Execution and NS onboarding ... 38

Experiment Distribution .. 38

 Result Catalog .. 40

Open APIs interfaces ... 40

5. INSTALLATION & RUN ... 43

 Requirements .. 43

 Pre-configuration and installation ... 43

5.2.1. Dispatcher Manual .. 45

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 10 of 74

5.2.2. Auth module standalone installation .. 45

Requirements ... 45

Module Structure ... 46

Configuration .. 46

Pre-requisites .. 46

Install & Run .. 46

6. TESTING ... 48

 Automating Test Dispatcher .. 48

7. PORTAL .. 65

 Experiment definition .. 65

 Experimenter dashboard ... 67

 Network services onboarding .. 68

 Portal implementation ... 69

7.4.1. User authentication .. 69

7.4.2. Experiment definition and execution ... 70

7.4.3. Network services onboarding ... 71

8. CONCLUSIONS ... 73

REFERENCES .. 74

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 11 of 74

1. INTRODUCTION

This deliverable is the second release of the two reports on Open API, service-level functions
and interfaces for verticals with the updated information regarding what has been
implemented during the second period (M16-M33) of the project lifetime. The previous report,
D3.8, was delivered in month 15.

The purpose of these two deliverables is to present the exposed Open API by the 5GENESIS
Facility with the goal of offering, especially to 5G vertical industries, an open and common
method for experimentation. This deliverable includes the description of the Open APIs final
implementation (Release B) and the improved functionalities identified in the roadmap for its
evolution. It includes the design, implementation and testing of the features as well as the
tenant web Portal, which is an alternative method for experimenters to access the 5GENESIS
facility; its goal is easing the experimenters´ work when using the facility.

The work described in both mentioned deliverables corresponds to the task T3.4 Open API,
service-level functions and interfaces for verticals included in the WP3 Openness Framework
and Integral Components of the Facility. These two deliverables are complemented with 14
other deliverables, each corresponding to the other tasks included in WP3 and delivered in M33
and M36. All these documents together will provide a complete overview of the work and
results delivered by WP3 during the duration of the project.

The deliverable is organized in the following manner:

• Section 1 (this section) is an introduction to the deliverable.

• Section 2 provides a summary of the features presented during the Release A and the
improvements during the second release of the component.

• Section 3 introduces the main Reference Points identified for the 5GENESIS Portal. The
new architecture of the Dispatcher is also explained.

• Section 4 is the main section of the deliverable as it presents the Dispatcher component.
The design, workflow, interfaces and implementation of the application gateway and
interaction with the sub-components are described here.

• Section 5 describes the required packages and manual to deploy, instance and run the
Dispatcher component trough the swagger interface.

• Section 6 defines the testing framework and evaluated tests of the internal
functionalities of the Open APIs interfaces that assure the correct functioning of the
component.

• Section 7 presents the design and implementation of the Graphical User interfaces
provided by the Facility of the Portal

• Section 8 provides the conclusions of the work done.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 12 of 74

2. RELEASE A SUMMARY

During the evolution of the project, the 5GENESIS architecture has been amendment to comply
with the new features and requirements of the components and use cases. The most relevant
changes have been focused on the coordinator layer delivered for the most part as the Open
5GENESIS Experimentation Framework1. In this document we will focus on the Open APIs as
the entry point of the facility and its interfaces with the underlying components. The figure
bellow presents the updated 5GENESIS architecture and highlights the components that belong
to the Dispatcher.

Figure 1: 5GENESIS Architecture

During the first period of the project, the Dispatcher component was designed in order to
comply with the requirements for the underlying components. The following picture depicted
in Figure 2 illustrates the actual architecture at the time of delivering the Release A component.
In the figure we can see the initial components identified in the architecture and the interfaces
to the other components in the 5GENESIS Coordination Layer, and the communication with the
MANO Layer, by connecting with the NFVO in the infrastructure.

1 https://github.com/5genesis

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 13 of 74

During the early stages of the project, very few features had been implemented to validate the
first cycle of evaluation during the delivery of Release A. In the meantime, due to the evolution
of the components involved in the 5Genesis architecture, the functionalities of the Open APIs
have also evolved.

Figure 2: Open API Release A

The main advances in the new Release B of the Open APIs component will be described in this
deliverable. In this section we list the features that has been implemented so far.

• Authenticate user to access the platform.

• Store NFV descriptors in the platform repository.

• Onboard Network Services (composed of VNFD, NSD and images) (MANO layer).

• Launch Experiment (Onboard Experiment Descriptor).

• Validate VNFD, NSD and ED.

• Retrieve List of experiment resources (Network Services, Test Cases, Scenarios, UEs…).

• Retrieve KPIs (Analytics module expose the query-result of the test cases from a specific
experiment).

• Distribute Experiments among facilities.

• Dispatcher robot self-validation testing.

• Authorize Experimenter to own resources.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 14 of 74

3. OPENAPIS IN 5GENESIS

5GENESIS architecture has been designed in a set of three layers to differentiate the different
modules developed in the framework of the project. These three layers explained in detail in
Deliverable D2.4 [1], called Coordinator, Management and Infrastructure layer, allows to
separate the communication for the different phases in the Experimentation facility.

The Coordinator layer define and prepares all the required information and automation of the
Experiment; the MANO layer coordinates and reserve the resources in the infrastructure to
allocate the slice and instantiate the service and application to perform the Experiment; and
the Infrastructure layer performs the execution of the test cases and KPIs validation of the
Experiment in the facility based on the definition in the coordinator layer. The Open APIs that
resides in the Coordinator Layer, is the entry point (interface) to the facility as it communicates
with the underlying modules in a centralized way. The features identified in Deliverable D2.4
[1] are described as follow:

• Authenticate user to access the platform.

• Onboard Network Services (composed of VNFD, NSD and images) (MANO layer).

• Retrieve List of experiment resources (Test Cases, Slice, Scenarios, UEs, Applications,
Experiments, Network Services).

• Launch Experiment (Onboard Experiment Descriptor).

• Validate VNFD, NSD and ED.

• Retrieve results (Experiment provide as output the test case results as well as console
logs from a specific experiment).

• Distribute Experiments among facilities .

 Reference points

An interface is a point of interconnection between two systems or parts of a system. An
interface might qualify as standard when the information flowing through that interface is
common to all processes of that type.

5GENESIS Open APIs try to be as close to the standards as possible to ease a potential
interoperability between a 5GENESIS Platform and an external one, but also for not reinventing
the wheel.

TM Forum’s suite of 50+ REST-based Open APIs has been collaboratively developed to be used
in a range of scenarios, internally enabling service providers to transform their IT and
operational agility and customer centricity, while externally delivering a practical approach to
seamless end-to-end management of complex digital services [2].

We have classified the 5GENESIS Open APIs interfaces depending on the type of process in
order to compare them with the TM Forum Open APIs.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 15 of 74

3.1.1. User management operations

User registration

This interface is used in 5GENESIS to register a user within a platform so the user can interact
with it. Studying TM Forum’s suite, the closest one is Customer Management API [3], which
provides a standardized mechanism for customer and customer account management
operations such as creation, update, retrieval, deletion and notification of events. Customer
can be a person, an organization or another service provider who buys products from an
enterprise. Customer management API allows management of identification and financial
information about them.

In 5GENESIS we do not need financial information and use only very limited information from
the user to avoid GDPR issues and because it is not necessary for our PoC. We can say our
interface is a very reduced version of the TM Forum one by removing the extra load.

Platform registration

The platform registration is a specific case of the user registration, so it fits also under the TM
Forum Customer Management API [2]. The process is the same as with the previous one:
removing all unnecessary fields and keeping only the basic ones to validate our PoC: email, user
ID and password.

3.1.2. Service catalogue operations

VNFD/NSD CRUD

These are very specific operations related to NFV so it is difficult to find a standard that matches
this interface. It can be reduced to catalogue operations by changing the type of item in the
catalogue: in our case, to NFV descriptor packages. Some ideas were extracted from similar
processes:

• Product Catalog Management API [2]: The catalog management API allows the
management of the entire lifecycle of the catalog elements, the consultation of catalog
elements during several processes such as ordering process, campaign management,
sales management.

• Product Ordering API [2]: The Product Ordering API provides a standardized mechanism
for placing a product order with all of the necessary order parameters. The API consists
of a simple set of operations that interact with CRM/Order Negotiation systems in a
consistent manner. A product order is created based on a product offer that is defined
in a catalog. The product offer identifies the product or set of products that are available
to a customer, and includes characteristics such as pricing, product options and market.

• Resource Catalog Management API [2]: The Resource Catalog Management API REST
specification allows the management of the entire lifecycle of the Resource Catalog
elements and the consultation of resource catalog elements during several processes
such as ordering process.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 16 of 74

• Service Catalog API [2]: The Service Catalog Management API REST specification allows
the management of the entire lifecycle of the Service Catalog elements and the
consultation of service catalog elements during several processes such as ordering
process.

Again, the above APIs are too elaborated and do not fit exactly our expectations for this
interface. Instead, we have decided to inherit the ETSI standards NFV-SOL 005 API [4] from the
NFVO, which is fully with that specification, specifically created for this purpose.

3.1.3. Experiments operations

Launch experiment

This interface was designed to launch an experiment, identified by an experiment descriptor,
which is included in the request, therefore, we do not have to deal with a catalogue. It is again
a very specific interface designed ad-hoc for 5GENESIS and only has in common with the
standard ones that it is intended to activate a service. That is the reason we have selected and
studied the following APIs:

• Product Ordering API

• Resource Ordering Management API

• Resource Function Activation and Configuration API

• Service Activation and Configuration API [3]: The REST API Conformance for the Service
Activation and Configuration API adds to the other three APIs that were mentioned
before in this section.

Abstracting the type of service, this interface is a simplified version of the Service Activation
and Configuration API, using a similar service model but with only the basic fields: id, name,
description, dates, status, etc. and removing external relationships, which are not needed in
5GENESIS.

3.1.4. Results gathering

The system provides an interface to retrieve the results of all the processing carried out within
the 5GENESIS platform after launching an experiment. The following API specification is the
closest to that purpose:

Result catalogue

• Performance Management API [3]: The Performance Management API REST
specification allows the management and control of the performance of the services.

Our interface works in a similar way, allowing the possibility of retrieving the measurements
taken for each job (experiment execution) and also, filter them by a specific measurement. The
rest of the proposed API standard has been discarded for 5GENESIS purposes, as we are not
using this interface in a flexible way (as originally intended) and as our KPIs are fixed or included
in the experiment template and not managed by the API.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 17 of 74

 Architecture update

As mentioned before, the Open APIs are considered a virtual interface to the underlying module
that can be access by the experimenter and the platform administrator. The Open APIs have
been designed based on the previous research and developed as the Dispatcher component in
the coordinator layer of the 5GENESIS architecture.

The 5GENESIS Dispatcher is the entry point to the system, offering a virtual interface to the
underlying modules with the functionalities to an Experimenter through a single interface.
These functionalities are known as the Open APIs, being able to interact with the key features
of the underlying modules (as shown in the architecture diagram below) considering security
and permission rights to the user without exposing sensitive information and access to the
experimenter.

This implementation is based on a NGINX reverse proxy containerized in a Docker environment.
By default, The Dispatcher includes as added on modules, the Auth, the MANO Wrapper and a
Swagger environment to test the available features. On top of all that and to secure all the
requests, the Dispatcher provides user registration and authentication using JWT. Consult
the Auth documentation in section 5.2.2. Auth module standalone installation, for the available
actions and how to use them.

NOTE: As shown below (Figure 3) in the architecture diagram, the Dispatcher does not deal
with the MANO directly but through a wrapper that simplifies the communication. Also, for
simplification, in this document we will refer to the MANO Wrapper as mano, which is
conceptually correct from the Dispatcher point of view.

The following Figure 3 depicts the Open API architecture with the different modules part of the
component.

Figure 3: Open API Architecture

https://github.com/5genesis/Dispatcher/blob/release_B/auth/README.md
https://github.com/5genesis/Dispatcher/blob/release_B/mano/README.md
https://github.com/5genesis/Dispatcher/blob/release_B/auth/README.md

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 18 of 74

As shown in the picture, the Experimenter will connect to the infrastructure through the
Dispatcher in order to access the services provided by the Open APIs in the facility.

The Open APIs are managed as docker containers with docker-compose as orchestrator. The
composition of those containers is explained in the following table:

Docker
image

Docker
name

Port Environment
variables

Volumes used

nginx dispatcher 8082 - /etc/nginx/nginx.conf

/var/log/nginx

/etc/ssl

/repository

mongo database 27017-27019 Init Data Bases /data/db

mano mano 5101 - /mano

/repository

auth auth 2000 - -

swaggerapi/
swagger-ui

swagger 5002 Open APIs file -

distributor distributor 5100 ELCM & Result
Catalog URLs

-

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 19 of 74

4. DISPATCHER MODULE

The Open APIs is the central point from which all request received through the Portal, in a more
user friendly; or through the Terminal by command-line tools can interact with the 5GENESIS
platform. This interface is centralized in the Dispatcher component. It is the application
gateway to redirect traffic request from the Experimenter to the underlying management
components of the Experiment execution and Services onboarding. It Is composed of Enablers
(facilitator) that offers the collection of integrated applications that process the requests to a
relative path in the platform and implements authentication based on JWT, securing all the
Experiment requests in the platform, providing a reliable infrastructure.

Moreover, in order to communicate with other platforms, it will interconnect with the
Dispatcher deployed in the remote location to distribute the Experiment and providing results.

 Authenticator

Authenticator is a REST API module in charge of managing the Authorization required to access
the platform. It is designed from the user and admin point of view. The Authenticator manages
the authentication, confidentiality, integrity and non-repudiation security features of the
platform.

Figure 4: Authentication design

Authentication is delegated to the Auth module. Users are registered into it and provides the
ability to the user to claim an access token. This token is a JSON Web Token [9]. It contains
user's identity (subject id, name, email) and some meta data relatives to the authorization
process (issuer, time to live, etc.). The access token can be claimed using Basic Authentication
(username + password). The access token is online, that is, a token used by client apps having
a direct user interaction (GUI such as: web site, desktop apps, mobile apps, etc). It's a short-
lived token, so it is renewed before its expiration date using a refresh token. Once claimed, the
access token is renewed as well as the refresh token. And the process is repeated during the
whole user session lifetime. Instead of requesting an access token, it is also possible to

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 20 of 74

authenticate every request using Basic Auth with a user already registered and validated by the
Platform Administrator.

Based on the two roles identifies in the platform, the Authenticator has the following features
for each role:

• User: also known as Experimenter of the facility, will access the platform to execute
the experiments.

o Registration

o Get Token

o Change Password

o Recover password

o Delete acount

• Admin: is the administrator of the platform and will validate the registration of users
in each facility.

o Provide user service authorization in a remote platform

o Show Users

o Delete an User

o Validate an User

o Show list of Platforms

o Validate a Platform

o Delete a Platform

o Drop DataBase

The Database Structure is defined in DB_Model.py and has the following tables to register and
have the control of the platform users:

Figure 5: Authorization Database

Once the DB is created, the Admin user is created, with username "Admin", password
"Admin" and email "5genesismanagement@gmail.com", settled in the mail config by default.

mailto:5genesismanagement@gmail.com

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 21 of 74

There are 4 tables.

• For Role table we can found 3 attributes:
o id >> Primary key

o username >> Foreign key to User table

o rol_name >> Role in the system

• User table with 6 attributes:
o id >> Primary key

o username >> Unique key to User

o email >> Unique in the system

o password >> Password for the user

o active >> Account validated, true for validated, false for not.

o deleted >> Account deleted by the users. But it persists for view the traces

• Registry table with 5 attributes:
o id >> Primary key

o username >> Foreign key to User table

o action >> function requested by the User

o data >> parameters for the request given

o date >> timestamp with the exact time where the action was requested

• Platform table with 4 attributes:
o platformName >> Unique key, needed for identify the platform in a simple way

o platform_id >> Primary key

o ip >> IP of the platform

o active >> Platform validated, true for validated, false for not.

The Open APIs are described in a json file indicating all the possible interfaces, its required
inputs, and the expected outputs. The json file is exposed on a swagger service in the 5002
port. Admin and users can use this interface. The users can use the token or the basic auth as
authorization method for the Open APIs operations. It is recommended to use the token
instead the basic auth as it adds more security in the system, due to the time constrained
lifetime feature of the token.

The endpoints in the auth component are the following:

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 22 of 74

Figure 6: Authorization Open APIs interfaces

Sequence diagrams & requests schema

The following sequence diagrams explain in detail how the authorization module works, the
first part of these diagrams is oriented from the user perspective and the second part is
oriented from the perspective of an administrator of the system.

User Registration
The first step the user needs to fulfil in order to connect to the platform is to create a valid
account to access the facility. In the main page of the Portal, or through the command line,
users can request the registration with the username, password to access the facility and a valid
email that will be used to validate the account and inform the user about any information
related to the facility.

The following diagram show the different steps that the user needs to accomplish to get the
account created and validated from the platform administrator.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 23 of 74

Figure 7: User registration through OA sequence diagram

The request the user will do through the Dispatcher is the following:

Figure 8: Open APIs register user specification

Password change
The user will be able to change their password if required. This request requires a Basic Auth
and the new password that the user wants to change. This sequence diagram explains the flow
of this process.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 24 of 74

Figure 9: User password change sequence diagram

The request the user will do through the Dispatcher is the following:

Figure 10: Open APIs change password specification

As we can see in Figure 10, there is a lock up at the top right side indicating the Auth
requirement by Basic Auth. And this basic auth will be very frequent in the following requests.
If the lock is clicked a popup appears with the Basic Auth form.

Figure 11: Basic Auth form

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 25 of 74

Get Token
One of the main utilities in this module is the creation of tokens to obtain an authorized key to
request in the system. The utilization of the tokens means that it is not necessary to send every
time the basic credentials (User/Password). However, to obtain a token it is necessary a Basic
Auth to authorize the user to use the platform with their account permissions. This token needs
to be stored by the user and used in the following requests.

The token has a time-life, so it is an authorization way to access in the resources that does not
compromise the security of the user and its password and the access is not guarantee along
the time due to the token revocation.

Figure 12: Get token sequence diagram

The request the user will do through the Dispatcher is the following:

Figure 13: Open APIs get token specification

Recover Password
If a user does not remember their password, the platform will be able to change the user’s
password and send the new password to the user by email. To this request, requires the email

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 26 of 74

registered in the system. After the user receives the new password they will be able to change
with the change password request.

Figure 14: Recover password sequence Diagram

The request the user will do through the Dispatcher is the following:

Figure 15: Open APIs recover password specification

The following sequence diagrams are design to the Administrator of the facility in order to
manage the Authorization in the platform. The Admin need to request with Basic Auth to force
an admin reverification:

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 27 of 74

Show registered users in the system
The Admin can view all the current users in the platform using the show function in the system.
If the Admin wants to use this request, a Basic Auth is required. This request can show the logs
of the users in the system if the verbose field is enabled in the request.

Figure 16: Show users sequence Diagram

The request the admin will do through the Dispatcher is the following:

Figure 17: Open APIs show users specification

Drop user database
The Admin can drop the user database to deny access to everyone in the platform. For this
request the admin basic auth is required.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 28 of 74

Figure 18: Drop DB sequence diagram

The request the admin will do through the Dispatcher is the following:

Figure 19: Open APIs drop DB specification

Delete a single user from the database
The Admin can delete a single user in the platform, denying the user to use the platform. For
this request the admin basic auth is required.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 29 of 74

Figure 20: Delete user sequence diagram

The request the admin will do through the Dispatcher is the following:

Figure 21: Open APIs delete user specification

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 30 of 74

Activate a single user from the database
The Admin should activate the users accounts registered in the system. Once a user is activated
in the system, the user can use the platform.

Figure 22: Activate a user sequence diagram

The request the admin will do through the Dispatcher is the following:

Figure 23: Open APIs validate user specification

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 31 of 74

Register platform in platform (In a Dispatcher environment)
The Admin of one platform can allow a remote platform to use their infrastructure to execute
a distributed experiment. In this scenario, multiple concepts are required in this flow, like the
service token. To explain this request, it is necessary to consider two platforms “Platform X”
and “Platform Y”, and a need “Platform X have to been able to communicate with the platform
Y”. The Admin platform of Y must allow the usage received from the platform X. And the Admin
of platform X must to allow the registration of the platform Y in the platform X. The
communication between platforms must be secured, for this reason a service token is required
to guarantee the use of authorized platforms.

The service token is composed by the platform name and the platformID, that is universally
unique identifier (UUID) that is created in the installation phase. Those parameters are
encrypted in the Auth module to create a service token that can be an authorization entry point
for external access.

Figure 24: Platform registration sequence diagram

The request the Admin will do through the Dispatcher is the following:

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 32 of 74

Figure 25: Open APIs register platform specification

Validate platform
After the register_platform_in_platform request is sent to the remote platform, the remote
Admin will need to validate the platform in the system, the following action is required:

Figure 26: Open APIs validate platform specification

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 33 of 74

Show platform

It is possible to list all the available platforms registered. The validated and the not validated
one. The request is the following:

Figure 27: Show platforms

Delete platform
The Admin is able to delete the registered platforms, to not been used in distributed
experiments, with the following request:

Figure 28: Open APIs delete platform specification

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 34 of 74

 Mano Wrapper

The Dispatcher has the Mano interfaces embedded in charge of managing the VIM , NFVO and
repository components. The Mano interfaces satisfies the CRUD operations required to
manage and index the required artifacts (images, VNFs & NSs).

Open APIs Specifications

The API specifications are described and available as a client in the swagger service exposed in
5002 port. The Dispatcher has the following interfaces to be redirected to the MANO Wrapper
component.

Figure 29: Open APIs Mano interfaces

The Open API specification is properly defined in the Open APIs description file. All of them are
secured by the auth module and it requires a validated account to be used. There are endpoints
to upload images and show the available resources in the VIM, index, des-index VNFs and NSs
packages and retrieve the packages indexed in the repository.

 Distributor

The Distributor is the component in charge of evaluating the Experiment Descriptor (ED) in
order to identify whether the execution involves other 5GENESIS platform in the Experiment.
Moreover, it distributes the experiments, by connecting them through the Dispatcher, where
two platforms are involved in the execution of a defined experiment.

In addition, the Distributor is in charge also of authorizing the users to retrieve their
experiments results and information. Facing those challenges, the Distributor is required to
provide a solution over those issues. In this module, once a experiment has been created, the
experiment ID is saved in the MongoDB Database with the username that created it in a pair
form (experimentID, username). This correlation is necessary to allow the experiment owner
to request and obtained the status of the experiment, cancel it or retrieve its results. All the
experiments are considered private, just the experimenter who created the experiment can
view and do operations over it.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 35 of 74

 ELCM

The interface oversees the experiment execution through the ELCM. This component has the
functionalities to execute experiments by the Experimenter and operates them during the
execution in the 5GENESIS platform. However, the ELCM has no authorization mechanisms to
reject the requests that consults experiments that belongs to one specific user, relying on the
Dispatcher the authorization of the user to access the resources.

Open APIs interfaces

The ELCM component has multiple operations described available in the swagger service, that
will be authorized by the dispatcher. The endpoints are described by the Open APIs.

Figure 30: ELCM Open APIs interfaces

Those endpoints defined in the Open APIs specification are ELCM functionalities, except the
first one, that is in charge of validating the ED and distribute the Remote Experiments, without
synchronizing with the ELCM communication. Not all the previous requests are redirected to
the ELCM directly, there are some endpoints that are redirected first to the Distributor module,
that is in charge of distribute the required resources before the ELCM redirection.

There is a different redirection logic for the endpoints described. It is possible to split the
requests interfaces in two types, the requests related to the CRUD experiments and the consult
of the ELCM resources.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 36 of 74

Figure 31: ELCM request split

The rest of the requests, out of experiments itself, are about the resources of the ELCM.
Requests to retrieve the available slices, the different UEs, the defined scenarios and testcases.

• elcm/facility/baseSliceDescriptors

• elcm/facility/testcases

• elcm/facility/facilityUes

• elcm/facility/scenarios

From the experiment point of view, the experimentation CRUD operations are the following:

• elcm/api/v0/run

• elcm/execution/<id>

• elcm/execution/<id>/descriptor

• elcm/execution/<id>/logs

• elcm/execution/<id>/cancel

• elcm/execution/<id>/delete

• elcm/execution/<id>/json

• elcm/execution/<id>/results

The flow for running the experiment, the first request in the list, perform a different sequence
in the Distributor. Therefore, it is possible to split again between the first request,
‘elcm/api/v0/run’, and the rest that have the structure ‘elcm/execution/<id>’. The first one is in
charge of the experiment creation and it requires a specific flow, as a prior validation of the ED
and dependencies validation is required.

Figure 32: ELCM Run Experiment flow

During the Experiment flow, it is needed to validate the experiment descriptor; check the
dependencies as the packages and the used images by the VNFs, if they are uploaded in the
location indicated by the Experiment Descriptor; and onboard the NS required in the execution.

It is important to have into account that during the running experimentation request, the
execution ID will be paired with the user that has requested the experimentation execution.
This correlation will be saved in the mongo database. That user will be required to execute the
rest of the CRUD requests that affects the experiment that they have created.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 37 of 74

Also, another thing to have into consideration to enable “Run an experiment flow” is that the
required NS selected during the experiment definition must be public or own by the
experimenter. This information is stored in the NS Repository of the 5GENESIS platform, and is
crosschecked during the validation of the ED to enable the execution of the experiment or
rejected.

To execute the experiment CRUD operations, the flow is defined as the follow:

Figure 33: ELCM CRUD Experiment flow

In each CRUD request not involved in the creation of experiment there is a flow to authorize
the user by the Distributor in which, if the user has already created the experiment, and redirect
the request to the ELCM. Those requests start with the following path “elcm/execution/<id>”.

ED validation

The Experiment Descriptor (ED) is a JSON file with all the required information to execute an
experiment by the ELCM. This descriptor is validated with a JSON schema in a semantic and
syntactic manner.

Figure 34: Experiment Descriptor

Once the descriptor is validated, it is required to verify that all the resources defined in the
descriptor are available in the platform. These resources are the UEs, the Slice, the Scenario
and the test cases form the ELCM resources, and the Network Services descriptors (NSD, VNFD)
and all the VIM images that each VNF could require to instantiate the services from the MANO
resources.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 38 of 74

The UEs, Slices, Scenarios and testcases are retrieved from the ELCM. The validation is about
to request the resources at the ELCM and verify that the experiment is able to be executed in
the ELCM.

Another interesting point is the NSs parameter, in the validation it is needed to verify that the
NS exists in the repository and also that the images used by the VNFs must be in the VIM
location indicated.

Experiment Execution and NS onboarding

At this point, the 5GENESIS repository is full of NSs & VNFs. To keep the consistency throughout
the facility, the necessary network services with its dependencies are onboarded onto the
NFVO only after analysing the Experiment Descriptor. In this way, exclusively the required
components of the NS will be onboarded instead of the whole set, making the process more
effective and optimizing the resources in the platform, prioritizing them for the execution of
the experiments. More importantly, this process is transparent to the user and to the rest of
the system modules.

Figure 35: Packages needed to be onboarded

Once the ED is validated with the required dependencies for the execution of the experiment,
it is then onboarded in the NFVO through the Distributor component, to be deployed once the
instantiation request from the Slice Manager is received in the NFVO.

 Experiment Distribution

The experiment distribution from the Dispatcher side is in charge of the Distributor component.
Once the platform has been registered, it is possible to request on it for distributed experiment
purposes.

Figure 36: Interplatform experiment Architecture

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 39 of 74

The Distributor component is able to redirect the experiment to another platform in a secure
way through HTTPS and a Service Token to be authorize.

The Distributor realizes the same actions of the standalone experimentation adding a pairing
flow to link the two experimentation platforms. It is needed to validate and verify the
experiment, then send the experiment to the ELCM. Each ELCM must know the execution id of
the distributed experiment. The flow is defined is illustrated below in Figure 37:

Figure 37: Experiment Distribution

The following picture (Figure 38) depicts the interaction flow when the Experimenter request
the execution of the distributed experiment and the steps to be followed in the communication
with the remote platform.

Figure 38: Experiment distribution flow

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 40 of 74

 Result Catalog

The experimentation results will be provided by the analytics components through the
Dispatcher to provide the security layer in the retrieve experiments. This component will
retrieve the experimentation results of the experimentation in a raw-data and refined-data
form. The Dispatcher authorizes the users to retrieve their own experiments results. This logic
is realized by the Distributor component, and the endpoints are available from the Dispatcher
through the Open APIs interfaces.

Figure 39: Experiments results flow

Open APIs interfaces

The interfaces to retrieve experiments are the following must follow the Open API specification
described before.

The request to obtain the refined data comes from the statistical container from the analytics
module. The interface is the following:

Figure 40: Retrieve experiment results interface through the Open API specification

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 41 of 74

The available responses could be the experiment results based on the request made by the
user, or if the use is not authorized or the request is not found in the system.

Figure 41: Retrieve experiment results response through the Open API specification

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 42 of 74

To obtain the raw data the following request is required.

Figure 42: Raw data interface

The raw data interface returns the values used by the analytics components to plot graphs and
calculate statistical operations. The returned values will be different depending of the filters
showed in the previous Figure 42.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 43 of 74

5. INSTALLATION & RUN

The following subsections detail the process of installing the Dispatcher from the 5GENESIS
public repository [https://github.com/5genesis], including requirements, explanations,
configuration, commands, etc.

 Requirements

The machine (virtualised of not) where the Dispatcher is to be installed needs some previous
software installed locally or remote but accessible for installing and running the 5Genesis
Dispatcher, e.g., the NVFO or the ELCM services do not need to be installed on the same
machine but have to http reachable from it. The physical requirements are the following [5]:

• 2 Cores

• 4GB of RAM

• 40GB of Disk

For installing and running the 5Genesis Dispatcher, you will need:

1. docker version >= 18.09.6

2. docker-compose version >= 1.17.1

3. NFVO + VIM +NS repository

4. ELCM

5. Analytics Container

6. Configuration files correctly filled up:
o Dispatcher config file: dispatcher.conf [5]
o MANO Wrapper module config [6]: configuration file (mano.conf) inside

the mano folder

 Pre-configuration and installation

The Dispatcher [5] needs to be configured properly before the containers are built. For that, a
simplified configuration file is offered: dispatcher.conf, which will have to be edited and
adapted. The file should contain information of all the modules the Dispatcher forwards
information to (validator, mano, elcm, result_catalog, etc.) and how to do it. For each module,
a new enabler will be added in the Dispatcher. It uses the following format:

[module_name]
PROTOCOL=[http|https]
HOST=x.x.x.x -> IP or DNS name of the host component
PORT=xxxx -> Port where the app API is available
PATH=/ -> Base path of the application ("/" by default)

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 44 of 74

The config file template already includes the validator and the mano modules as they are
included within the Dispatcher. They are already configured and should not be touched.

During the installation process you will be asked for a couple of simple questions to re-verificate
the configuration of the Dispatcher and the mano wrapper, and also some config for integration
testing purposes.

Once edited properly, the configuration will be applied and the containers built, based on the
config file we have just created (dispatcher.conf):

$./install.sh

Example:

[mano]
PROTOCOL=http
HOST=mano
PROTOCOL=5001
PATH=/

The start script will deploy and run the Dispatcher container, the Distributor, the MANO
Wrapper and a Swagger environment to test the available features:

$./start.sh

- Dispatcher will be accessible through port 8082 through an SSL certificate, so HTTPS is
required.

- Swagger environment will be accessible through port 5002.
- The SSL certificate is self-signed. It is not supervised by a Certification Authority because

in this current moment is not possibly know where the platforms will be hosted.

For installing the certificate is required to open the internet navigator in
https://<IP_OF_DISPATCHER>:8082

Something like this will appear, the web page format depends on the browser:

Figure 43: Allow self-signed certificate

You must add the exception/believe in the certificate or something like that. After this step,
you can use the Dispatcher through SSL certification.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 45 of 74

5.2.1. Dispatcher Manual

Once the installation is over, the Dispatcher with all the required components is up and running.
The Dispatcher can manage and authorize every request though it reverse proxy.

All the possible requests available in the system are described in the Open APIs specification
showed through an swagger client.

Figure 44: OPEN APIs interfaces

5.2.2. Auth module standalone installation

Although the Authenticator is installed along with the Dispatcher, it could be also installed in a
standalone way to add a security layer to an external software. In the following section it is
explained in deep the development over the Authenticator module, considering the
dependencies, configuration, dockerisation and installation.

Requirements

The authorization module is developed in Python3. The required dependencies for building the
project are the following:

jwcrypto==0.6.0
gevent==1.4.0
Flask==1.0.2
Flask-SQLAlchemy==2.1
requests==2.20.1
flask_mail==0.9.1
Flask-Cors==3.0.8
Flask-RESTful==0.3.7
pymongo==3.8.0

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 46 of 74

Module Structure

The module files are structured in the following way:

auth/ Main Folder
|
├─ swagger/ Swagger Folder
| └──swagger.json Open APIs Specification
|
├─ templates/ Folder for different templates
│ ├─ recover.html Recover password template
│ ├─ validate_platform.html Validate platform template
│ └──validate_user.html Validate users template
│
├─ auth.db SQL Database
├─ Auth.py Server
├─ auth_logic.py Service logic
├─ auth_utils.py Utils tools
├─ constants.py Constans file
├─ DB_Model.py Database Model
├─ DockerFile DockerFile for building the conatiner
├─ key.json Key for encrypt/desencrypt Tokens
├─ MailConfig.py Mail config
├─ platform_name Name of the platform, used in platform register
├─ platformID The platform ID autogenerated before the install
├─ requirements.txt Python Dependencies
└─ settings.py Server settings

Configuration
For configuring the e-mail, the security token and some extra configuration, we can find the
files below:

• Email config is defined in MailConfig.py

• key.json for encrypting and decrypting tokens.

• Settings.py
o Setting the token timeout
o Setting the suffix request for internal calls

Pre-requisites
For installing and running the 5Genesis Auth you will need:

• docker version >= 18.09.6

• docker-compose version >= 1.17.1

• MongoDB

Install & Run

Authorization is very easy to install and deploy in a Docker container. By default, the Docker
will expose port 2000, so change this within the Dockerfile if necessary. When ready, simply
use the Dockerfile to build the image.

cd auth

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 47 of 74

docker build -t auth .

This will create the auth image and pull in the necessary dependencies. Once done, run the
Docker. For running the image and map the container port (2000) to whichever port you wish
on your local host (2000 also in this case):

docker run -p 2000:2000 auth

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 48 of 74

6. TESTING

 Automating Test Dispatcher

We have created a set of tests to audit the behaviour of the Dispatcher. These tests can be run
by the developer/integrator, after the release of a new version to verify the previously
implemented functions are still working and nothing is broken after the new commit; or by the
user, to verify the Dispatcher is correctly installed, configured and connected with its neighbour
elements.

The tests are written using Robot Framework [7], a generic open source automation framework
which can be used for test automation and robotic process automation (RPA). Robot
Framework is open and extensible and can be integrated with virtually any other tool to create
powerful and flexible automation solutions. Being open source (Apache License 2.0) also means
that Robot Framework is free to use without licensing costs.

The testing framework is executed in a separate container executing the file “runtest.sh” which
also includes a web server that serves the testing reports after the execution of the set of tests
is finalised [Figure 45]. This report is accessible via port 8200.

Figure 45 - Test report

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 49 of 74

Each endpoint is tested following the logical cycle of the application, just like the Experimenter
would interact with the system. The Automated Dispatcher test also consider the error outputs
of the system when the interaction with the system do not follow the system specifications.

The following table describe the template used to the test execution and the intermediate steps
that pass the system internally.

Experimenter test

Identifier <Component>_<TestCase>

Test Purpose &
risks detected

Description of the test case and its importance due the risks that could
exists if it is not verified and validate.

Configuration Configuration of the component

Pre-test
conditions

Preconditions in the test case (Populated databases, Application
phases, authorized users…)

External
components
involved

Component Involved in Mocked

<Name> <Usage in the Testcase> True | False

Applicability Component features in use

Test Cases ID Description Expected result

1 <Testcase in success scenario>

<result>

2 <Testcase in failure scenario>

<result>

3 <Testcase in _____ scenario>

<result>

Test Sequences TC_ID Sequence

1 < Sequence in a success scenario>

2 < Sequence in failure scenario>

3 < Sequence in _____ scenario>

• User Registration in the platform (AUTH_Reg)

Identifier AUTH_REG

Test Purpose &
risks detected

Register user in the platform to be validated by the Admin. The risks
could be are three:

• Registration of previously registered users

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 50 of 74

• Registration with a wrong formed email

Configuration Component Auth is configured by default over the Dispatcher stack.

Pre-test
conditions

The user’s database is empty, the only user able to perform actions in
the platform is the Admin.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Gmail Mail notification False

Applicability Auth module provides authorization functions at Dispatcher level. This
testcase validates the registration of users. Then the admin can validate
them, and the user is able to use the platform.

Test Cases ID Description Expected result

1 Success Registration

User registered

2 Failed registration due to malformed
email

Email malformed

3 Failed registration due to an existing
username

Username already
exists

4 Failed registration due an existing
email

Email already exists

Test Sequences TC_ID Sequence

1 Inputs: username, email, password

I. Dispatcher redirects the request to auth module
II. Auth validates the imputs

III. Auth check if the user already exists in the database
IV. User is registered in the system.
V. Email notification to the platform Admin to validate

the user

2 Inputs: username, malformed email, password

I. Dispatcher redirects the request to auth module
II. Auth rejects the email validation

3 Inputs: existing username, email, password

I. Dispatcher redirects the request to auth module
II. Auth validates the inputs

III. Auth rejects the registration due username already
exists

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 51 of 74

4 Inputs: username, existing email, password

I. Dispatcher redirects the request to auth module
II. Auth validates the inputs

III. Auth rejects the registration due email already exists

• Validate the account

Identifier AUTH_VAL

Test Purpose &
risks detected

the Admin is able to validate users once a user is registered in the
platform. The risks could be are three:

• Try to validate users that does not exists

• Validate a user previously validated

Configuration Component Auth is configured by default over the Dispatcher stack.

Pre-test
conditions

The user’s database has one user pending to be validated, the only user
able to perform actions in the platform is the Admin before the
validation.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Gmail Mail notification False

Applicability This testcase validates the validation of users. Once the admin validates
the user, the user is able to use the platform.

Test Cases ID Description Expected result

1 Success validation

User validated

2 Failed validation due an inexistent user User does not exist

3 Validation over a validated user No changes

Test Sequences TC_ID Sequence

1 Inputs: username (existing user and not validated yet)

I. Dispatcher redirects the request to auth module
II. Auth validates the inputs

III. Auth check if the user already exists
IV. User is validated in the system.
V. Email notification to the user

2 Inputs: username (existing user)

I. Dispatcher redirects the request to auth module
II. Auth validates the inputs

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 52 of 74

III. Auth rejects because the user does not exist

3 Inputs: username (existing user and validated)

I. Dispatcher redirects the request to auth module
II. Auth validates the inputs

III. Auth check if the user already exists
IV. User is already validated in the system

• Show users

Identifier AUTH_SHOW

Test Purpose &
risks detected

The Admin is able to show the users registered in the platform.

Configuration Component Auth is configured by default over the Dispatcher stack.

Pre-test
conditions

The user’s database has one user validated.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Applicability This testcase validates the show users’ function.

Test Cases ID Description Expected result

1 Success users retrieve Users

Test Sequences TC_ID Sequence

1 Inputs: Basic admin Auth

I. Dispatcher redirects the request to auth module
II. Auth retrieve the users in the platform

• Login platform

Identifier AUTH_TOK

Test Purpose &
risks detected

Authorization by Token is the best option to access in the Dispatcher
service because a token is associated to an account and the token has
a short life. However, the risks are the following:

• Get an authorization token from a not validated user

• Get an authorization token from a not existing user

Configuration Component Auth is configured by default over the Dispatcher stack.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 53 of 74

Pre-test
conditions

The user’s database has one user pending to be validated and other
already validated.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Applicability Auth module provides authorization functions at Dispatcher level. This
testcase validates the retrieve of token access to use the Dispatcher in
a more secure way from Basic Auth.

Test Cases ID Description Expected result

1 Success token retrieve

Token

2 Failed token retrieve from a not
existing user

Not existing user

Test Sequences TC_ID Sequence

1 Inputs: Basic Auth (Username, Password)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Token is built and retrieved

2 Inputs: Basic Auth (Not existing Username, Password)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Rejection of token built

• List VIMs

Identifier WRAPPER_VIM_LIST

Test Purpose &
risks detected

The VIM is one of the main resources in the Mano Wrapper to deploy
NS. A NS instantiation needs at least one to deploy the services.

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth Admin authenticator False

Applicability Mano module retrieves the VIM PoP available.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 54 of 74

Test Cases ID Description Expected result

1 Success VIM resources retrieve

VIM resources

Test Sequences TC_ID Sequence

1 Inputs: Auth token

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano retrieves the VIM PoPs and manager

• Upload image VIM

Identifier WRAPPER_IMG_UPL

Test Purpose &
risks detected

Mano is able to upload VIM images. The images could have several
formats allowed by the VIM. Taking this into account we consider
several risks:

• Upload the same image twice

• Upload an image with not allowed format

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

The VIM has not images uploaded.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

VIM Image Upload False

Applicability Mano requires VIM images to index VNFs in the NS repository. The
images could be used for 0 to N VNFs.

Test Cases ID Description Expected result

1 Success image upload

Image uploaded

2 Failed to upload an existing image Image not uploaded

3 Failed Image upload due an
unsupported image extension

Unsupported image

Test Sequences TC_ID Sequence

1 Inputs: Auth token + image file + selected VIM

I. Dispatcher redirects the request to auth module

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 55 of 74

II. Auth check if the user already exists and its validated
III. Dispatcher redirects the request to mano module
IV. Mano validate the image file
V. Mano save the image details in the DB

VI. Mano upload the image in the VIM

2 Inputs: Auth token + image file + selected VIM

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano validate the image file
V. Mano rejects the image file due the image already

exists

3 Inputs: Auth token + image file + selected VIM

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the image file due the file extension is

not supported

• Register VIM image

Identifier WRAPPER_IMG_REG

Test Purpose &
risks detected

The VIM could have images preloaded or the process for the
administrator could be easier to upload images directly to the VIM. In
this case, the Mano is able to just register images to satisfy the VNF
dependencies without uploading an image by the Mano wrapper.

The risks detected are the following:

• Users can not register images in the VIM

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

Image to be registered is uploaded in the VIM

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth Admin authenticator False

Applicability Admin can register images to satisfy VNF dependencies.

Test Cases ID Description Expected result

1 Success image register Success registration

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 56 of 74

2 Failed image register (try to be
registered by one user)

Registration
rejection

Test Sequences TC_ID Sequence

1 Inputs: Admin Basic Auth+ name image +vim

I. Dispatcher redirects the request to auth module
II. Auth check if admin user

III. Dispatcher redirects the request to mano module
IV. Mano register the image in the DB

2 Inputs: User Basic Auth

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the registration due the user is not the

Admin

• List images

Identifier WRAPPER_IMG_LIST

Test Purpose &
risks detected

The images located in the VIM are the main dependency for VNFs
packages. Having a clear understanding of the current images in the
VIM is an important knowledge for the experimenter.

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

One or more images uploaded or registered in the VIM.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth Admin authenticator False

Applicability Mano module retrieves the VIM images available.

Test Cases ID Description Expected result

1 Success VIM images retrieve

VIM images

Test Sequences TC_ID Sequence

1 Inputs: Auth token

V. Dispatcher redirects the request to auth module
VI. Auth check if the user already exists and its validated

VII. Dispatcher redirects the request to mano module

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 57 of 74

VIII. Mano retrieves the VIM images in all PoPs

• Index VNF

Identifier WRAPPER_VNF_INDEX

Test Purpose &
risks detected

Mano is able to create a repository of NS checking all the dependencies
required to be instantiated. The first step to index in the repository is
the VNFs. The VNFs must be validated and checked. Taking this into
account we consider several risks:

• Upload the same VNF twice

• Upload a VNF with incorrect descriptor

• Upload a VNF with an image dependency that does not exist

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

The VNF repository is empty. The VIM has at least one image.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

Applicability Mano can create a NS repository indexing VNFs and NSs artefacts. The
first step is the Indexing of VNFs.

Test Cases ID Description Expected result

1 Success VNF Indexing VNF Indexed

2 Failed VNF Index (VNF already exists) VNF not uploaded

3 Failed VNF Index (Wrong descriptor) VNFD wrong formed

4 Failed VNF Index (Image dependency
does not exist)

Image does not exist

Test Sequences TC_ID Sequence

1 Inputs: Auth token + VNF

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano validate the VNF and check its dependencies
V. Mano index the VNF

2 Inputs: Auth token + VNF (already indexed)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 58 of 74

III. Dispatcher redirects the request to mano module
IV. Mano rejects the indexing due the VNF already exists

3 Inputs: Auth token + VNF (already wrong formed)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the indexing due the VNF is wrong

formed

4 Inputs: Auth token + VNF (missing image dependency)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the indexing due the VNF requires an

image not uploaded or registered yet

• List VNF

Identifier WRAPPER_VNF_LIST

Test Purpose &
risks detected

Mano is able to list the VNFs indexed in the repository. This action is
performed by a regular user to know the current VNFs in the system.

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

The VNF repository has at least one VNF indexed.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

Applicability Mano can list the VNF packages in the repository.

Test Cases ID Description Expected result

1 Success VNF Listing VNF Packages data

Test Sequences TC_ID Sequence

1 Inputs: Auth token

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano list the VNFs available for the user (public

packages and privates of the user) in the repository

• Index NS

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 59 of 74

Identifier WRAPPER_NS_INDEX

Test Purpose &
risks detected

Mano is able to create a repository of NS checking all the dependencies
required to be instantiated. The second step to index in the repository,
after the VNFs, is the NSs. The NSs must be validated and checked.
Taking this into account we consider several risks:

• Upload the same NS twice

• Upload a NS with incorrect descriptor

• Upload a NS with a VNF dependency that does not exist

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

The VNF repository has at least one VNF.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

Applicability Mano can create a NS repository indexing VNFs and NSs artefacts. The
second step is the Indexing of NSs.

Test Cases ID Description Expected result

1 Success NS Indexing NS Indexed

2 Failed NS Index (NS already exists) NS not uploaded

3 Failed NS Index (Wrong descriptor) NSD wrong formed

4 Failed NS Index (VNF dependency does
not exist)

VNF does not exist

Test Sequences TC_ID Sequence

1 Inputs: Auth token + NS

VI. Dispatcher redirects the request to auth module
VII. Auth check if the user already exists and its validated

VIII. Dispatcher redirects the request to mano module
IX. Mano validate the NS and check its dependencies
X. Mano index the NS

2 Inputs: Auth token + NS (already indexed)

V. Dispatcher redirects the request to auth module
VI. Auth check if the user already exists and its validated

VII. Dispatcher redirects the request to mano module
VIII. Mano rejects the indexing due the NS already exists

3 Inputs: Auth token + NS (already wrong formed)

V. Dispatcher redirects the request to auth module

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 60 of 74

VI. Auth check if the user already exists and its validated
VII. Dispatcher redirects the request to mano module

VIII. Mano rejects the indexing due the NS is wrong
formed

4 Inputs: Auth token + VNF (missing image dependency)

V. Dispatcher redirects the request to auth module
VI. Auth check if the user already exists and its validated

VII. Dispatcher redirects the request to mano module
VIII. Mano rejects the indexing due the NS requires an

VNF not indexed yet

• List NS

Identifier WRAPPER_NS_LIST

Test Purpose &
risks detected

Mano is able to list the NSDs indexed in the repository. This action is
performed by a regular user to know the current NSs in the system.

Configuration Mano component should be configured with at least one VIM.

Pre-test
conditions

The VNF repository has at least one NS indexed.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

Applicability Mano can list the NS packages in the repository.

Test Cases ID Description Expected result

1 Success NS Listing NS Packages data

Test Sequences TC_ID Sequence

1 Inputs: Auth token

V. Dispatcher redirects the request to auth module
VI. Auth check if the user already exists and its validated

VII. Dispatcher redirects the request to mano module
VIII. Mano list the NSs available in the repository (public

packages and privates of the user)

• Onboard NS

Identifier WRAPPER_NS_ONBOARD

Test Purpose &
risks detected

Mano is able onboard in the NFVO the required NS and VNF packages.
Taking this into account we consider several risks:

• Onboard the NS or VNF twice

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 61 of 74

• Onboard a no existing NS

Configuration Mano component should be configured with at least one NFVO.

Pre-test
conditions

The NS repository has at least one NS.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

OSM (NFVO) NFVO to onboard the NS False

Applicability Mano onboard the required NS artefacts in the NFVO to allow the NFVO
to deploy those network services.

Test Cases ID Description Expected result

1 Success NS onboarding NS onboarded

2 Failed NS onboarding (NS already
onboarded)

NS not onboarded

3 Failed NS onboarding (NS do not exist) Not found NS

Test Sequences TC_ID Sequence

1 Inputs: Auth token + NS (Already indexed)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano checks if the NS is already onboarded
V. Mano finds the NS and check its dependencies

VI. Mano onboard into NFVO the VNFs and NS and
return the Ns_id (onboarded)

2 Inputs: Auth token + NS

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the onboarding due NS already exists

3 Inputs: Auth token + NS (Not existing)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the onboarding due NS does not exist

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 62 of 74

• Delete NS

Identifier WRAPPER _NS_DELETE

Test Purpose &
risks detected

Mano is able to delete the NS packages from the repository and OSM.
Taking this into account we consider several risks:

• Delete a non-existing NS

Configuration Mano component should be configured with at least one NFVO.

Pre-test
conditions

The NS repository has at least one NS and the NFVO could have the NS
onboarded.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

OSM (NFVO) NFVO to onboard the NS False

Applicability Mano NS deletion allows remove the NS package from the repository
and from the NFVO if it is onboarded.

Test Cases ID Description Expected result

1 Success NS deletion NS deleted

2 Failed NS deletion (NS does not exist) NS not deleted

Test Sequences TC_ID Sequence

1 Inputs: Auth token + NS id (Exists and onboarded)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano checks if the NS exists, if it has been indexed

by the user and if it is already onboarded
V. Mano remove the onboarded and the indexed NS

2 Inputs: Auth token + NS id (Not exists)

I. Dispatcher redirects the request to auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to mano module
IV. Mano rejects the deletion because NS does not exist

• ED validation

Identifier DISTR _ED_VALIDATION

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 63 of 74

Test Purpose &
risks detected

Distributor component is able to verify and validate the Experiments
Descriptors. Taking this into account we consider several risks:

• Validation of an ED with missing parameters

• Validation of an ED with wrong values types (lists instead
strings)

• Validation of an ED with wrong experiment distributed

Configuration ELCM endpoint must be configured in the dispatcher.conf file.

Pre-test
conditions

The ELCM is up and running.

External
components
involved

Component Involved in Mocked

Dispatcher Reverse proxy in the REST Request False

Auth User authenticator False

ELCM Check of the ELCM resources True

Applicability Distributor is able to validate the EDs (Experiment Descriptor) and test
if the dependencies are available.

Test Cases ID Description Expected result

1 Success validation ED validated

2 Failed validation due missing
parameters in the ED

ED not validated

3 Failed validation due wrong types in
the ED

ED not validated

4 Failed validation due wrong
distributed ED

ED not validated

Test Sequences TC_ID Sequence

1 Inputs: Auth token + ED

I. Dispatcher redirects the request to Auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to Distributor
module

IV. Distributor validates the ED, the ELCM and the
MANO NS and VIM dependencies.

V. Distributor retrieve an ok with the validation.

2 Inputs: Auth token + ED

I. Dispatcher redirects the request to Auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to Distributor
module

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 64 of 74

IV. Distributor detects that the ED is not properly
composed due missing parameters.

V. Distributor retrieve a not ok with the validation.

3 Inputs: Auth token + ED

I. Dispatcher redirects the request to Auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to Distributor
module

IV. Distributor detects that the ED is not properly
composed due bad types of any parameter.

V. Distributor retrieve a not ok with the validation.

4 Inputs: Auth token + ED

I. Dispatcher redirects the request to Auth module
II. Auth check if the user already exists and its validated

III. Dispatcher redirects the request to Distributor
module

IV. Distributor detects that the ED is not properly
composed due missing distributed parameter.

V. Distributor retrieve a not ok with the validation.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 65 of 74

7. PORTAL

The 5GENESIS Portal leverages the use of the Open APIs for providing a more user-friendly web
interface for experimenters to interact with the 5GENESIS Facilities. Aside from the capabilities
provided during Release A of this component, which have been refined and improved according
to the feedback received during the previous experimentation phase, the following features
has been included as part of the Release B development cycle:

- Support for defining experiments with a customized set of parameters.
- Support for the definition of experiments based on the use of MONROE nodes.
- Implementation of the East/West interface for communicating two Portal instances

during the definition of distributed experiments.
- Integration with the Dispatcher component, which provides the required privacy and

security management.
- A complete overhaul of the network service’s onboarding process, integrated with the

Dispatcher’s catalogue, as well as the network slicing configuration for experiments.

The 5Genesis Portal is available as open-source software since May 2020, being hosted as a
GitHub repository [8].

 Experiment definition

Users registered in the Portal can create experiments, which will be linked to their account for
easier management. Each experiment execution will also be registered in the Portal. Four kinds
of experiments can be created through the Portal interface:

- Standard experiments, where the experimenter selects a number of standard test cases
as provided by the facility, which are executed without modification.

- Custom experiments, which are very similar to standard experiments, but allow the
configuration of certain parameters. A custom experiment definition screen can be
seen on Figure 46.

Figure 46: Custom experiment configuration parameters

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 66 of 74

- MONROE experiments, which are executed using a MONROE node and are configured
by providing the name of the Application (MONROE container) to use, and the set of
parameters that will be sent to the node Figure 47.

Figure 47: MONROE experiment definition

- Distributed experiments, where the execution is coordinated between two 5Genesis
platforms. In this case, experimenters first configure all the parameters on the first
platform and select a remote platform from the available ones (Figure 48, left). On a
second step, experimenters configure the parameters for the remote platform, which
the Portal transparently retrieves using the East/West interface (Figure 48, right).

Figure 48: Distributed experiment definition

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 67 of 74

 Experimenter dashboard

Once created, experiments are visible on the experimenter’s dashboard (Figure 49), where the
user can request the execution of the experiment or review the results and logs of the previous
executions. In the case of distributed experiments, the user has access to the logs of both
platforms (Figure 50).

Figure 49: Experimenter dashboard

Figure 50: Execution logs (distributed experiment)

For each experiment execution, the Portal also provides a link to a customized Grafana
dashboard (Figure 51) that displays the most important raw results obtained during the
experiment execution as well as access to the Analytics dashboard, where the user can perform
a more in-depth analysis of the results.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 68 of 74

Figure 51: Grafana dashboard

 Network services onboarding

The network service onboarding capabilities of the Portal has been re-built from the ground up
since Release A, in order to take advantage of the additional capabilities provided by the
network services repository available through the Dispatcher. The network service onboarding
interface can be seen in Figure 52.

Figure 52: Network services onboarding

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 69 of 74

All network services available to the experimenter (which includes public network services as
well as those defined by the experimenters themselves) are visible in the network services
dashboard (Figure 53). From this interface, the user can continue editing previously created
network services and easily see which ones can be used while defining a new experiment, since
only those that are marked as ready are selectable in the experiment definition interface.

Figure 53: Available network services on the user account

 Portal implementation

The 5Genesis Portal has been implemented using the Flask framework for Python, along with
Bootstrap for the front-end rendering. Internally, the Portal makes use of the functionality
provided by the Open APIs, as well as several additional data structures and logic in order to
provide a more user-friendly interface for the experimenters.

7.4.1. User authentication

The Portal makes use of the user management capabilities of the Open API while providing an
additional layer of security to user authentication. Portal accounts are automatically linked to
a new Open API account upon registration, which effectively creates a two-step authentication
process to every request performed through the Portal, while allowing us to implement
additional functionality in the Portal independently or the features exposed by the Open API.

When a user registers through the Portal, an initial account is created in the Portal database,
and then, the provided credentials are used for automatically generating a new account
through the Open APIs. This initial account is unusable until the user activation has been
completed by an administrator, given that every login attempt is performed in two steps:

- First, the credentials are compared with those in the Portal database. If the user exists
and the credentials are correct the login process can continue.

- Then, the Portal checks the user authentication using the Open APIs. If the user is active,
then they can access to the Portal.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 70 of 74

This login step is performed by using basic authentication (i.e. sending the username and
hashed password to the Open APIs), however, once the credentials are verified access tokens
are retrieved through the Open APIs and used for every subsequent request.

The existence of the user’s Portal account on top of the account on the Open APIs allows us to
provide some additional features, like saving, for each user independently, their collection of
defined experiments and network services, and provide easier access to the information of
previous experiment executions.

Table 1 shows the endpoints of the Open APIs that are used for managing authentication:

Endpoint (Dispatcher) Method Notes

/auth/register POST Requests the creation of a new user.

/auth/get_token GET Retrieves a new access token for the user.

Table 1 Authentication endpoints used by the Portal

7.4.2. Experiment definition and execution

During an experiment definition, the Portal retrieves the platform configuration (available test
cases, UEs, etc.) by communicating directly with the ELCM component on the same platform
(Table 2). The Portal cannot make use of the related functionality in the Open APIs since this
information is retrieved once during the start-up process and saved globally in the Portal
instance. When generating the views for a specific user the Portal filters the information so that
only the values available for that particular experimenter are visible.

Endpoint (ELCM) Method Notes

/facility/ues GET Retrieves a list of available UEs in the platform

/facility/testcases GET Retrieves a list of available test cases in the
platform, along with additional information for
each of them.

/facility/baseSliceDescriptors GET Retrieves a list of available base slice descriptors in
the platform

/facility/scenarios GET Retrieves a list of available scenarios in the
platform

Table 2 Facility information endpoints used by the Portal

In the case of a distributed experiment, makes use of the East/West interface for
communicating with the remote platform. This communication is performed during the
definition of the remote part of the experiment. Since the user does not necessarily have a user
in the remote platform, and given that distributed experiments can only make use of public
resources it is also not possible to retrieve this information using the Open APIs. The endpoints
exposed by the East/West interface of the Portal can be seen in Table 3.

Endpoint (Remote Portal) Method Notes

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 71 of 74

/distributed/ues GET Retrieves a list of available UEs in the remote
platform

/distributed /testcases GET Retrieves a list of available test cases in the
remote platform, in this case only public test
cases.

/distributed/baseSliceDescriptors GET Retrieves a list of available base slice
descriptors in the remote platform

/distributed/scenarios GET Retrieves a list of available scenarios in the
remote platform

/distributed/networkServices GET Retrieves a list of public network services in
the remote platform

Table 3 East/West interface endpoints used by the Portal

Experiment execution, however, is performed by using the experimenter’s credentials. In this
case the Portal generates an Experiment Descriptor by using the values selected by the user
and sends the request to the Open APIs, which perform the initial validation. This validation
includes the user access to the selected test cases as well as the correct onboarding of the
required network service’s artifacts. Additionally, the execution logs are also retrieved through
the Open APIs. The endpoints used can be seen in Table 4.

Endpoint (Dispatcher) Method Notes

/elcm/api/v0/run POST Requests the execution of an experiment, using an
experiment descriptor

/elcm/execution/<id>/logs GET Retrieves the logs from an experiment execution

Table 4 Experiment execution endpoints used by the Portal

During the execution of the experiment the ELCM sends real time status information, such as
the percentage of completion or the current stage of the experiment, to the Portal, which is
displayed in the experimenter dashboard.

7.4.3. Network services onboarding
The definition of a complete network services is a complex task that involves the creation of
several artifacts that need to be onboarded on the Management and Orchestration layer. The
Portal provides an easy to use interface for performing this process in an organized manner,
making use of the MANO wrapper provided by the Dispatcher component.
The definition of the network service can be completed step by step at different times, while
the Portal keeps track of the current status. For the selection of each component the Portal
provides a list of existing artifacts that are available, or allows the user to upload a new one.

Table 5 Shows the endpoints used during the onboarding process:

Endpoint (Dispatcher) Method Notes

/mano/vims GET Retrieves a list of available VIMs

/mano/image GET Retrieves the list of available images in each VIM

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 72 of 74

POST Onboards a new VIM image

/mano/vnfd GET Retrieves the list of available VNFDs

POST Onboards a new VNFD

/mano/nsd GET Retrieves the list of available NSDs

POST Onboards a new NSD

Table 5 Network service onboarding endpoints used by the Portal

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 73 of 74

8. CONCLUSIONS

The report presented the activities performed during the design and development of the Open
APIS interface of the 5GENESIS facility [10]. In briefly presented the architecture and internal
components that will manage the access of the Experimenter to the platform. Over the Release
B implementation of the Open APIs, was extending the features and functionalities
implemented during the first cycle refined, based on the feedback produced by the WP2 Facility
Requirements and Specifications, improving the performance and security of the Open APIs.
The authenticator module secures the access to the facility, enabling the communication with
the Dispatcher component, that is the engine module that will redirect the Experimenter
request to the underlying modules that communicates with the Enablers.

Moreover, the role of the Dispatcher in the Distribution of the experiments in a remote
platform is also described together with the diagrams and flow for synchronizing the execution
of the experiment and KPIs result gathering.

With the goal of offering an open and common method to interact with the Facility for

experimentation, 5GENESIS exposes the Open API to two clients, by command line or by

offering a Portal with more user-friendly Web UI. The current implementation of the Portal has

been also presented in this document.

This document is delivered at month 33 of the project, as final report of the activities performed

in Task 3.4 Open APIs, service level functions and interfaces for verticals, in the overall

Openness Framework and Integral Components of the Facility in WP3.

5GENESIS D3.8 • Open APIs, service level functions and interfaces for verticals (Release B)

© 5GENESIS Consortium Page 74 of 74

REFERENCES

[1] D2.4 Final report on facility design and experimentation planning
https://5genesis.eu/wp-content/uploads/2020/07/5GENESIS_D2.4_v1.0.pdf

[2] TM FORUM API references https://www.tmforum.org/open-apis
[3] Customer Management API

https://projects.tmforum.org/wiki/display/API/Open+API+Table
[4] ETSI standards NFV-SOL 005 API - https://www.etsi.org/deliver/etsi_gs/NFV-

SOL/001_099/005/02.07.01_60/gs_NFV-SOL005v020701p.pdf
[5] 5GENESIS Dispatcher Github repository:

https://github.com/5genesis/Dispatcher/blob/master/dispatcher.conf
[6] Wrapper configuration file MANO module:

https://github.com/5genesis/Dispatcher/blob/master/mano/README.md#config-file
[7] Robot Framework https://robotframework.org
[8] 5GENESIS Portal Repository https://github.com/5genesis/Portal
[9] Keycloak User Autentication https://ncarlier.gitbooks.io/oss-api-

management/content/howto-kong_with_keycloak.html
[10] H. Koumaras et al., "5GENESIS: The Genesis of a flexible 5G Facility," 2018 IEEE 23rd

International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), Barcelona, Spain, 2018, pp. 1-6, doi:
10.1109/CAMAD.2018.8514956.

https://5genesis.eu/wp-content/uploads/2020/07/5GENESIS_D2.4_v1.0.pdf
https://www.tmforum.org/open-apis
https://projects.tmforum.org/wiki/display/API/Open+API+Table
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.07.01_60/gs_NFV-SOL005v020701p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.07.01_60/gs_NFV-SOL005v020701p.pdf
https://github.com/5genesis/Dispatcher/blob/master/dispatcher.conf
https://github.com/5genesis/Dispatcher/blob/master/mano/README.md#config-file
https://robotframework.org/
https://github.com/5genesis/Portal
https://ncarlier.gitbooks.io/oss-api-management/content/howto-kong_with_keycloak.html
https://ncarlier.gitbooks.io/oss-api-management/content/howto-kong_with_keycloak.html

