
5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 1 of 54

Deliverable D3.16

Experiment Lifecycle Manager
(Release B)

Editor B. García (UMA)

Contributors UMA (Universidad de Malaga), FhG (Fraunhofer-
Gesellschaft zur Förderung der angewandten Forschung
e.V.)

Version 1.0

Date March 31, 2021

Distribution PUBLIC (PU)

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 2 of 54

List of Authors

UMA University of Malaga

B. García, MM Gallardo, P. Merino

FhG Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

F. Eichhorn

NCSRD National Center For Scientific Research “DEMOKRITOS”

H. Koumaras

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 3 of 54

Disclaimer

The information, documentation and figures available in this deliverable are written by the
5GENESIS Consortium partners under EC co-financing (project H2020-ICT-815178) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 4 of 54

Copyright

Copyright © 2021 the 5GENESIS Consortium. All rights reserved.

The 5GENESIS Consortium consists of:

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” Greece

AIRBUS DS SLC France

ATHONET SRL Italy

ATOS SPAIN SA Spain

AVANTI HYLAS 2 CYPRUS LIMITED Cyprus

AYUNTAMIENTO DE MALAGA Spain

COSMOTE KINITES TILEPIKOINONIES AE Greece

EURECOM France

FOGUS INNOVATIONS & SERVICES P.C. Greece

FON TECHNOLOGY SL Spain

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG
E.V.

Germany

IHP GMBH – INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS/LEIBNIZ-
INSTITUT FUER INNOVATIVE MIKROELEKTRONIK

Germany

INFOLYSIS P.C. Greece

INSTITUTO DE TELECOMUNICACOES Portugal

INTEL DEUTSCHLAND GMBH Germany

KARLSTADS UNIVERSITET Sweden

L.M. ERICSSON LIMITED Ireland

MARAN (UK) LIMITED UK

MUNICIPALITY OF EGALEO Greece

NEMERGENT SOLUTIONS S.L. Spain

ONEACCESS France

PRIMETEL PLC Cyprus

RUNEL NGMT LTD Israel

SIMULA RESEARCH LABORATORY AS Norway

SPACE HELLAS (CYPRUS) LTD Cyprus

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 5 of 54

TELEFONICA INVESTIGACION Y DESARROLLO SA Spain

UNIVERSIDAD DE MALAGA Spain

UNIVERSITAT POLITECNICA DE VALENCIA Spain

UNIVERSITY OF SURREY UK

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the 5GENESIS Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement
of the authors of the document and all applicable portions of the copyright notice must be
clearly referenced.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 6 of 54

Version History

Rev. N Description Author Date

1.0 Release of D3.16 Bruno García (UMA) 31/03/2021

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 7 of 54

Index of Figures

Figure 1 The ELCM component in the Coordination Layer of the 5GENESIS reference architecture . 17

Figure 2 General architecture of the ELCM ... 20

Figure 3 Resource availability wait loop .. 22

Figure 4 ELCM Administration Interface ... 25

Figure 5 Log viewer ... 26

Figure 6 RTT experiment dashboard generated by the ELCM ... 29

Figure 7 Main classes on the Experiment life-cycle implementation... 30

Figure 8 PlatformConfiguration and auxiliary classes ... 33

Figure 9 TAP test steps for MONROE experiments .. 35

Figure 10 Throughput Grafana dashboard .. 38

Figure 11 Example TestPlan and external parameters for ELCM... 46

Figure 12 SSH Instrument configuration ... 47

Figure 13 Run SSH Command step settings .. 47

Figure 14 Retrieve Background SSH Command step settings ... 48

Figure 15 SCP Transfer step settings ... 48

Figure 16 InfluxDb result listener settings ... 50

Figure 17 DateTime overrides ... 50

Figure 18 Python debugger ... 51

Figure 19 ELCM model checking results ... 52

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 8 of 54

Index of Listings

Listing 1 Example of an UE definition file .. 27

Listing 2 Example of a test case definition file... 28

Listing 3 NEST payload format .. 37

Listing 4 Experiment descriptor format .. 42

Listing 5 LogInfo format ... 42

Listing 6 East/West results payload .. 44

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 9 of 54

Index of Tables

Table 1 Document dependencies .. 16

Table 2 Available parameters for Grafana panel definition. .. 38

Table 3 Experiment related endpoints exposed through the Open APIs .. 40

Table 4 Facility related endpoints exposed through the Open APIs ... 41

Table 5 East/West interface endpoints. ... 43

Table 6 Slice Manager endpoints used by the ELCM ... 44

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 10 of 54

LIST OF ACRONYMS

Acronym Meaning

3GPP Third Generation Partnership Project

5G PPP 5G Infrastructure Public Private Partnership

API Application programming interface

CPU Central Processing Unit

CQI Channel Quality Indicator

C-RAN Cloud-RAN

CSI Channel State Information

DUT Device Under Test

E2E End To End

EaaS Experimentation as a Service

EARFCN Evolved-UTRA Absolute Radio Frequency Number

eMBB Enhanced Mobile Broadband-5G Generic Service

eNB eNodeB, evolved NodeB, LTE eq. of base station

ELCM Experiment Lifecycle Manager

EU European Union

EPC Evolved Packet Core

ETL Extract, Transform, and Load

ETSI European Telecommunications Standards Institute

EUTRAN Evolved Universal Terrestrial Access network

FDD Frequency Division Duplexing

GPS Global Positioning System

ICCID Integrated Circuit Card Identifier

ICMP Internet Control Message protocol

IMEI International Mobile Station Equipment Identity

IMSI International Mobile Subscriber Identity

IP Internet Protocol

IOT Internet of Things

KPI Key Performance Indicator

LAC Location Area Code

LTE Long-Term Evolution

LTE-A Long-Term Evolution - Advanced

MAC Medium Access Control

MANO NFV MANagement and Organisation

MCC Mobile Country Code

MCS Mission Critical Services

MCSI Modulation and Coding Scheme Index

MEC Mobile Edge Computing

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

mMTC Massive Machine Type Communications-5G Generic Service

MNC Mobile Network Code

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 11 of 54

MOCN Multiple Operator Core Network

MONROE Measuring Mobile Broadband Networks in Europe.

NEST Network Slice Type

NFV Network Function Virtualisation

NGMN Next generation mobile networks

NMS Network Managment System

OFDM Orthogonal Frequency Division Multiplexing

PoC Proof of concept

PCRF Policy and Charging Rules Function

PDCP Packet Data Convergence Protocol (PDCP)

PDSCH Physical Downlink Shared Channel

PoP Point of Presence

POSIX Portable Operating System Interface

P-GW Packet Data Node Gateway

PLMN Public Land Mobile Network

PMI Precoding Matrix Indicator

PNF Physical Network Functions

PRB Physical Resource Block

RAN Radio Access Network

REST Representational State Transfer

RSCP Received Signal Code Power

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

RSSI Received Signal Strength Indicator

RTT Round trip time

SCPI Standard Commands for Programmable Instruments

SIM Subscriber Identity Module

SIMO Single input, multiple output

TAP Test Automation Platform

UDP User datagram Protocol

UE User Equipment

uRLLC Ultra-Reliable, Low-Latency Communications

YAML YAML Ain't Markup Language (human readable data serialization
language)

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 12 of 54

Executive Summary

The Experiment Life Cycle Manager, or ELCM, is part of the coordination layer of the 5GENESIS
architecture responsible for the scheduling and execution of experiments. It handles the life
cycle of an experiment from start to end. Keeping the experiment in an internal queue until all
the resources required are available. It employs independent executors to run the experiment,
communicates with the lower layers and provides information about the experiment execution
status and metadata to the upper layers.

The general codebase of the ELCM will be common to all of the 5GENESIS platforms. However,
it can be customized to meet the needs of each platform. Platforms can modify the contents of
the Platform Registry or extend the ELCM by developing additional plugins.

The ELCM has been developed from the ground up using Python [1], and uses different
interfaces for communicating with specific elements of the platforms. Additionally, the ELCM
exposes an internal web administration interface developed in Flask [2].

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 13 of 54

Table of Contents

LIST OF ACRONYMS .. 10

1. INTRODUCTION .. 15

 Purpose of the document .. 15

 Document dependencies ... 15

 Structure of the document .. 16

 Target audience ... 16

2. RELEASE A SUMMARY AND RELEASE B INTRODUCTION .. 17

 Release A Summary ... 17

 Release B Introduction ... 18

3. ELCM DESIGN ... 20

 Scheduler ... 21

3.1.1. Feasibility and resource availability .. 22

 Composer... 23

3.2.1. Variable expansion .. 23

 Execution Engine ... 24

 Other components ... 25

3.4.1. Administration interface ... 25

3.4.2. Platform Registry .. 26

3.4.2.1. Test case and UE description ... 27

3.4.2.2. Resources... 28

3.4.2.3. Scenarios .. 28

3.4.3. Experiment Registry .. 28

3.4.4. Grafana dashboard generator .. 28

4. ELCM IMPLEMENTATION .. 30

 Experiment life-cycle implementation ... 30

4.1.1. The ExperimentRun class .. 30

4.1.2. The ExecutorBase and Child classes ... 31

4.1.3. Tasks ... 32

 Composer... 33

4.2.1. The composition process .. 33

 Experiment execution workflow .. 34

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 14 of 54

4.3.1. Standard and custom experiments ... 34

4.3.2. MONROE experiments .. 35

4.3.3. Distributed experiments ... 35

 Network Services deployment ... 36

 Grafana dashboard generation .. 37

4.5.1. Grafana dashboard auto-generation .. 39

5. ELCM INTERFACES ... 40

 Northbound interfaces .. 40

5.1.1. Open APIs ... 40

5.1.2. 5Genesis Portal ... 42

 East/West interface ... 42

 Southbound interfaces .. 44

5.3.1. Katana Slice Manager ... 44

5.3.2. Network management system (NMS) and platform infrastructure 45

5.3.2.1. TAP (OpenTAP) as execution environment .. 45

(a) Integration of TAP test plans .. 45

(b) SSH TAP Plugin .. 46

5.3.2.2. Generic script execution and additional integration 48

5.3.3. Analytics module and Results Registry ... 49

5.3.3.1. InfluxDb Helper class and CsvToInflux ... 49

5.3.3.2. InfluxDb Result Listener ... 49

6. TESTING AND VALIDATION.. 51

7. CONCLUSIONS ... 53

8. REFERENCES .. 54

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 15 of 54

1. INTRODUCTION

 Purpose of the document

This deliverable describes the progress of designing and implementing the Experiment

Life Cycle Manager (ELCM) for Release B, as well as the changes performed since the

publication of the Release A of this component. The ELCM is the entity that performs the

management, orchestration and execution of Experiments in the 5GENESIS Platforms, and

has been developed from the ground up as part of the 5Genesis Open Experimentation

Framework.

In this document the reader can also find details about the different interfaces of this

entity, namely the northbound interface (exposed by the ELCM), the southbound

interfaces (used for controlling the different elements of the 5GENESIS facilities) and the

East/West interface (used for communicating two different ELCM instances during a

distributed experiment execution).

Additionally, some information regarding the basic testing of the developed functionality

(as an initial step before the in-depth testing performed as part of Work Package 5) is also

included.

 Document dependencies

The ELCM design and implementation is based on specifications and requirements described
in the Architecture related deliverables, which are detailed in Table 1.

It should be noted that this deliverable does not follow the same convention as most of the
other Work Package 3 deliverables, where only the new components and functionality added
in Release B are detailed, while referencing the original Release A deliverables for the rest of
the content.

This deliverable can be considered self-contained and supersedes D3.15 in order to improve
readability, given that many of the design and implementation concepts were introduced
during Release A and it would be difficult to understand the changes on Release B without these
concepts.

However, readers who have previously read D3.15 can find, on sections where content
overlaps, a section called ‘Differences from Release A’, which shows in a concise way the
changes performed during the development of Release B.

Table 1 summarizes the relevance of previous deliverables produced by the 5Genesis project
towards this document.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 16 of 54

Id Document title Relevance

D2.2 [3] 5GENESIS Overall Facility Design
and Specifications

The 5GENESIS facility architecture is defined
in this document. The list of functional
components to be deployed in each testbed
is defined.

D2.3 [4] Initial planning of tests and
experimentation

This document describes the different
components of the coordination layer and
defines the sequence of interactions between
the components of the facility during an
experiment execution.

D2.4 [5] Final report on facility design and
experimentation planning

This document describes the final
architecture of the coordination layer, as well
as the requirements and work flow followed
during the execution of a distributed
experiment.

D3.15 [8] Experiment and Lifecycle Manager This deliverable describes the design and
implementation of the ELCM during Release
A

Table 1 Document dependencies

 Structure of the document

The document is structured as follows:

- Section 1, Introduction (the present section)
- Section 2, Release A summary and Release B introduction, summarizes the state and

available features of the ELCM during Release A, and specifies the improvements
available as part of Release B

- Section 3, ELCM Design, describes in detail the design principles of the ELCM
- Section 4, ELCM Implementation, describes the implementation of the ELCM Release B
- Section 5, ELCM Interfaces, presents the interfaces and helpers that can be used by the

ELCM during the execution of an experiment.
- Section 6, Testing and Validation, provides a small summary of the initial tests

performed in order to confirm the correct operation of the ELCM.

 Target audience

This document provides details about the functionality supported by the ELCM, as well as high-
level information regarding its design and implementation. However, specific details that may
only be useful while contributing to the codebase of the ELCM are not included.

Therefore, the target audience of this document are the 5GENESIS Platform administrators,
who are required to know about the general implementation aspects of the ELCM in order to
effectively configure and manage this element.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 17 of 54

2. RELEASE A SUMMARY AND RELEASE B INTRODUCTION

 Release A Summary

The Release A of the ELCM contained part of the functionality included in the Release B, and
has been used as the base for the development of the second release.

Figure 1 The ELCM component in the Coordination Layer of the 5GENESIS reference architecture

This initial release has been successfully integrated on all of the 5Genesis platforms, being used
during the experimentation phase reported on Deliverable D6.2 [10], which demonstrate that
the architecture designed for the Release A is suitable for the requirements of the 5Genesis
project.

 The Release A development cycle included:

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 18 of 54

- The design and implementation of the ELCM’s general architecture, including the
separation on the Scheduler, Composer and Execution Engine components, as well as
the Platform-Specific Configuration composition process.

- The implementation of the initial logic for executing experiments, separated in three
different stages (Pre-Run, Run and Post-Run), with the execution of a specific test-case
defined by a set of Tasks.

- The implementation of several Task types, for use by platform administrators during the
definition of the available facility test cases.

- The creation of the administration interface

The Release A of this component became open source software in May 2020, receiving its final
revision on March of the same year, and is available for reference as a separate branch in the
ELCM Github repository 1he implementation details of this version can be seen on Deliverable
D3.15 [8], which the present document extends by detailing the changes and additions
introduced during the development of the Release B.

 Release B Introduction

The development of the Release B began on October 2019, in parallel with the support and
development of the final features of the Release A. The source code of the Release B is available
as a separate branch in Github 2 , which, at the time of writing, is also the default branch of the
repository.

The following list includes some of the changes and additions implemented as part of the
Release B development:

- Scheduling of experiments based on the resources available in the platform, which
includes:

o Blocking the execution of an experiment until the required equipment has been
released by other experiments that are making use of.

o Blocking the execution until the required computational resources are available
in the Management and Orchestration layer

o Automatically cancelling the execution of experiments that are deemed
unfeasible due to their requirements.

o Allowing experimenters to request the execution of an experiment exclusively
in the platform, without any other experiments running at the same time,
regardless of the requirements.

- Support for experiments with a set of user customized parameters.
- Support for the execution of experiments using a MONROE node.
- Implementation of an East/West interface for communication between two ELCM

instances and support for the execution of distributed experiments.
- An update on the composition logic, in order to support the changes introduced in the

second version of the Experiment Descriptor.
- The integration with the Dispatcher component, which provides the required privacy

and security management.
- Additional support for the functionality exposed by the Open APIs.

1 https://github.com/5genesis/ELCM/tree/release_A
2 https://github.com/5genesis/ELCM/tree/release_B

https://github.com/5genesis/ELCM/tree/release_A
https://github.com/5genesis/ELCM/tree/release_B

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 19 of 54

- The implementation of new Task types that give additional possibilities to platform
administrators while describing the implementation of the platform’s test cases.

In addition, many of the features present in the Release A received further refinement,
extending and improving the functionality or fixing detected issues.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 20 of 54

3. ELCM DESIGN

The ELCM is divided in 3 main components, as well as several auxiliary elements. These main
components are:

- The Scheduler, which is responsible for managing the execution of the experiments
on a higher level: An experiment execution comprises three stages (Pre-Run, Run
and Post-Run), and the Scheduler keeps track of the execution of each of these
stages for multiple experiments in parallel.

- The Execution Engine includes the logic for managing the execution of each
experiment stage, by generating an independent Executor. The progress in each
Executor is further divided in different Tasks, which are dependent on the test case
and the equipment involved in the experiment.

- The Composer is the entity responsible for creating the Platform Specific
Configuration of the received experiments. The configuration generated includes
the Tasks to be run by the Executors and will depend on the contents of the Facility
Registry and the contents of the Experiment Descriptor.

Figure 2 General architecture of the ELCM

Additionally, the following elements are included within the ELCM instance:

- The Platform Registry is the set of configuration files that define the capabilities and
expected behaviour of the platform when specific test cases and equipment are
tested. These configuration files are organized in different folders that reside
alongside the ELCM.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 21 of 54

- The Experiment Registry, which stores the logs generated by the different
experiment executions, as well as certain metadata, is also part of the ELCM.

The work-flow of the ELCM when an experiment execution is requested is as follows:

- The Scheduler creates a new Experiment Run instance. These objects contain all the
information about a particular execution.

- The Scheduler requests the creation of a Platform Specific Configuration to the
Composer, using the Experiment Descriptor received on the request.

- The Composer uses the information contained in the Platform Registry along with
the specific requests contained in the Experiment Descriptor to generate this
configuration (including the Tasks to execute).

- The Scheduler queues the experiment execution, starting from the Pre-Run stage.
The execution is then handled by the Pre-Run Executor, which runs on a separate
thread and waits until all resources are available (among other actions).

- When the Pre-Run executor finishes (which means that all the required resources
are available), the Scheduler moves the experiment to the Run stage. Again, the
execution of the specific experiment Tasks is handled by a different thread, allowing
the concurrent execution of different experiments.

- The Scheduler moves the execution to the Post-Run stage once the Run stage
finishes, and additional Tasks run on the new Executor.

- When finished, the Scheduler removes the Experiment Run from the queue.

Differences from Release A:

- The ELCM exposes the northbound interface to the Open APIs, instead of
communicating directly with the Experimenter Portal.

- The Platform and Experiment Registries are now officially part of the ELCM (instead
of being temporarily included). Although they were separate entities in the 5Genesis
architecture, these components are tightly coupled with the ELCM. To improve
performance and ease of operation it was decided to deploy them together.

- The communication options with the lower layers have been clarified in Figure 2:
Though it was already the case for Release A, it is now explicit that the experiment’s
Tasks can communicate directly with the different probes and components of the
platform’s infrastructure.

 Scheduler

The Scheduler is the component that manages the execution of the experiments at the Stage
level. The stages defined are:

- Pre-Run: This stage includes the experiment registration and configuration, the
feasibility check and the wait loop until for the required resources, and the
instantiation of the required network services.

- Run: The Run stage is different for each experiment type, and consist on the
execution of the actions required for running the experiment’s test cases in the
platform.

- Post-Run: During this stage, the resources used by an experiment are released,
including the decommissioning of network services.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 22 of 54

All the experiments are kept on an internal Execution queue, where they will transition from
one stage to the next. When an experiment enters one of the stages the execution is handled
by an independent Executor, which is able to run in parallel with any other Executors belonging
to other experiments. These Executors will run their specific tasks one after another, until they
reach completion or an error is detected.

The ELCM is able to respond to events in an asynchronous manner as they are received via the
REST API or the administration interface, while separate Executors can run in parallel. However,
the transitions between different stages of an experiment execution are coordinated by a
separated background thread known as the Heartbeat. This thread will periodically trigger a
check on the status of every Executor from active experiments (i.e. on any of the Run stages),
triggering the transition to the next stage when an Executor has finished, or marking them as
errored or user cancelled when necessary.

The use of the Heartbeat thread allows us to reach a good balance between the performance
gains of the parallel execution of multiple experiments, and the predictability of handling the
stage transitions in a sequential order, which makes, for example, the resource handling logic
more robust.

Differences from Release A:

- The instantiation and decommission of network services are now part of the Pre and
Post-Run stages respectively, instead of the first and last Tasks of the Run stage.

- Resource management and the feasibility check did not exist in Release A, meaning
that multiple experiments could make use of the same equipment in parallel,
possibly causing execution errors or inconsistent results.

3.1.1. Feasibility and resource availability

Figure 3 Resource availability wait loop

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 23 of 54

As part of the Pre-Run stage, every experiment execution is tested for feasibility, and is forced
to wait until the required resources are available. By following the flow presented in Figure 3
the ELCM ensures that every experiment can safely run in the platform, without interfering
with others. Additionally, the ELCM handles the execution of experiments on a first come-first
served basis, meaning that for cases where two experiments are waiting for the same resource,
and both can be run, the ELCM will give priority to the one that has been waiting for longer.

The feasibility check verifies that the experiment does not require more resources than those
available in the Management and Orchestration layer, as well as confirms that the required
local resources have been defined in the platform. The ELCM requests information about the
maximum number of computation cores, memory and storage that can be used for the
deployment of network services from the Slice Manager, as well as the requirements for each
of the network services included in the Experiment Descriptor. Then compares the maximum
values with the total amount required for the network services deployment, aborting the
execution of the experiment if this total exceeds the maximum amount of resources available
in the facility.

If the experiment is feasible, the ELCM checks if an exclusive experiment is being executed in
the platform, or if the experiment is exclusive itself and other experiments are running. In both
circumstances, the experiment must wait for a certain time before checking the testbed
availability again. For every failed test the experiment must wait for 10 seconds before the
conditions are checked again. This value was selected because it presents a good balance
between loading the system with many unnecessary checks and making the experiment wait
for additional time when it is not required.

When the experiment passes the previous test, the availability of the required resources is
checked. First, by testing that all the physical resources of the facility are available for use and,
if needed, that enough computational resources in the MANO layer are free. In this case, the
execution of the experiment is permitted and the next steps can be performed.

 Composer

The Composer is able to create the Platform Specific Configuration of the experiments, by using
the information available in the Facility Registry in conjunction with the Experiment Descriptor
received along with the execution request. By using this information, the Composer can
generate the list of Tasks that are to be executed during the experiment run, as well as any
other configuration value needed to support the execution.

3.2.1. Variable expansion

Certain values cannot be known while the platform administrator defines the Tasks that take
part in a test case’s execution, for example, the Execution ID (that depends on the number of
experiments executed previous to the current one in the platform) or the location of an
experiment execution’s temporary folder, which is created at run-time. Other values may
depend on the output provided by external applications or, in the case of distributed
experiments, be defined by the remote platform. For this reason, the ELCM offers a set of
‘placeholders’. The placeholders follow a predefined format (a known identifier enclosed in

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 24 of 54

curly or square brackets, preceded by ‘@’), to ease their detection. The ELCM will substitute
them with the appropriate run-time values, when the respective Task starts running.

The following values are recognized while enclosed by curly brackets (‘@{ … }’):

- ExecutionId: Unique ID of the experiment execution.
- SliceId: ID of the network slice deployed during the Pre-Run stage.
- TempFolder: Path to the temporary folder created exclusively for use of the current

experiment executor.
- Application: The contents of the `Application` field in the Experiment Descriptor.
- JSONParameters: The complete `Parameters` dictionary of the Experiment

Descriptor, encoded in JSON format.
- ReservationTime and ReservationTimeSeconds: The value of the `ReservationTime`

field of the Experiment Descriptor.
- TapFolder and TapResults: Paths to the folders where the OpenTAP instance and

result output reside, as set in the configuration of the ELCM.

It is also possible to expand the values contained in the `Parameters` dictionary independently,
using the following expressions:

- @[Params.key]: The value of `key` in the dictionary, or `<<UNDEFINED>>` if not
found

- @[Params.key:default]`: The value of ̀ key` in the dictionary, or ̀ default` if not found

Additionally, platform administrators have access to Tasks that are able to generate new (key,
value) pairs at runtime, either with a fixed value, a value extracted from a file or taken from a
previous task. Once a value has been published using either of these methods, it becomes
available for variable expansion using the following expressions:

- @[key] or @[Publish.key]: Expands to the value of `key` if defined,
`<<UNDEFINED>>` otherwise

- @[key:default] or @[Publish.key:default]: Expands to the value of `key` if defined,
or `default`.

Differences from Release A:

- The composition logic was updated in order to support the second version of the
Experiment Descriptor.

- Many variables were not available during Release A, and the ‘Parameters’ dictionary
did not exist.

 Execution Engine

The Execution Engine is responsible for performing the specific actions required for the
execution of a specific execution Stage. These Stages are, in turn, composed of different Tasks.
For every Stage, a different Executor will handle the execution of the defined Tasks.

The Executors will run all the tasks one after another, in the order defined by the Composer,
however, multiple Executors can run in parallel. Due to this, the ELCM is able to run any number
of experiments at the same time, provided that there are enough resources in the platform for
all of them.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 25 of 54

Each of the different Tasks may perform any action on other components of the platform. For
example, it’s possible to define a Task that calls a shell script for enabling iPerf on a remote
machine or another that executes a TAP[1][12] (Test Automation Platform) TestPlan that
activates a probe running on a mobile phone.

Differences from Release A:

- There are no important differences on the implementation of the Execution Engine.

 Other components

3.4.1. Administration interface

The Administration Interface is a web application developed in Flask[2] that gives a unified
interface to platform administrators. Here they can review the execution status of an active
experiment run and the usage of physical resources in the platform. From this interface, it’s
also possible to cancel the execution of an experiment and review the generated execution
logs.

Figure 4 ELCM Administration Interface

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 26 of 54

Figure 5 Log viewer

Differences from Release A:

- The interface includes the visualization of used resources in the platform.
- Diagnostic logs are now visible in the interface, making it easier for platform

administrators to detect errors in the configuration or in the definition of the facility
test cases.

3.4.2. Platform Registry

The Platform Registry defines the exposed functionality and behaviour of a 5Genesis facility,
and comprises a set of configuration files in YAML format, distributed across four different
folders that reside along with the ELCM files. These folders are:

- TestCases: Contains information about the available test cases that can be run in
the facility.

- UEs: Contains specific actions that are required for using and releasing specific
equipment of the facility during the execution of test cases.

- Resources: Contains the description of certain facility equipment, in particular those
that can be used only by a single experiment at a time.

- Scenarios: Contains additional configuration values that can be set during the
deployment of a network slice.

Differences from Release A:

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 27 of 54

- During Release A, a single file (facility.yml) defined both test cases and UEs.
Resources and scenarios were not available.

3.4.2.1. Test case and UE description

The contents of the ‘UEs’ and ‘TestCases’ sub-folders describe the behaviour of the 5Genesis
Platform when an Experiment execution request is received. The ELCM will load the contents
of every YAML file contained in these folders on start-up and whenever the `Reload facility`
button on the web dashboard is pressed. The dashboard will also display a validation log
(`Facility log`) which can be used in order to detect errors on a test case or UE configuration.

The files in both folders share a similar format, both containing a main dictionary key that
defines the name of the test case or UE, which contains the set of actions to perform when the
UE is in use or the test case is being executed. For test cases, the configuration files contain
additional keys used to define the kind of experiment (standard, custom, public or private,
distributed), the available configuration parameters (for custom experiments), or the contents
of the Grafana dashboard. An important field that is included in the definition of every task is
the ‘Order’ value, which is used during the composition process while generating the final list
of actions to execute.

Listing 1 and Listing 2 show an example of the format of an UE and test case description file,
respectively. More information about the composition process can be found in Section 4.2.1.

TestUE:

 - Order: 1

 Task: Run.Message

 Requirements: [UE1]

 Config:

 Message: This is a dummy entity initialization

 Severity: INFO

 - Order: 10

 Task: Run.Message

 Config:

 Message: This is a dummy entity closure

 Severity: INFO

Listing 1 Example of an UE definition file

Slice Creation:

 - Order: 5

 Task: Run.SingleSliceCreationTime

 Config:

 ExperimentId: "@{ExperimentId}"

 WaitForRunning: True

 Timeout: 60

 SliceId: "@{SliceId}"

Standard: True

Distributed: False

Dashboard:

 - Name: "Slice Deployment Time"

 Measurement: Slice_Creation_Time

 Field: Slice_Deployment_Time

 Unit: "s"

 Type: Singlestat

 Percentage: False

 Size: [8, 8]

 Position: [0, 0]

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 28 of 54

 Gauge: True

 Color: ["#299c46", "rgba(237, 129, 40, 0.89)", "#d44a3a"]

 Thresholds: [0, 15, 25, 30]

Listing 2 Example of a test case definition file

3.4.2.2. Resources

The files contained in the Resources folder are used to describe certain physical or logical
equipment that cannot be used concurrently by several experiments. For example, the UE
configuration file for a specific mobile phone is usually tied to one resource file, so that this
phone is only used by a single experiment at a time. Another possible example is the use of a
certain probe during the execution of a particular kind of experiment.

Resource definition files contain the following keys:

- Id: Resource ID. This ID must be unique to the facility and will be used to identify the
resource during test case execution.

- Name: Name of the resource (visible on the ELCM dashboard).

- Icon: Resource icon (visible on the ELCM dashboard).

Required resources are configured per task. When an experiment execution is received, the
ELCM will generate the list of all required resources for all the tasks in the experiment (either
from a test case or UE definition). When an experiment starts, all these resources will be locked
and the execution of other experiments with common requirements will be blocked, until the
running experiment finishes and their resources are released.

3.4.2.3. Scenarios

In the context of the ELCM a Scenario is a collection of configuration values that are used to
further customize the behaviour of a deployed slice. These files contain a dictionary with a
single key (that defines the Scenario name) and, as value, a dictionary that contains the
collection of values that are to be customized by the Scenario. More information about the
usage of scenario files can be seen in Section 4.3.

3.4.3. Experiment Registry

The Experiment Registry contains information about each independent experiment execution,
including logs and additional metadata, such as the start and end times, or the final execution
status of each stage, along with certain files generated by the executed tasks. The Experiment
Registry is used to support some of the endpoints of the Open APIs, for example, those that
allow the retrieval of experiment logs.

3.4.4. Grafana dashboard generator

The ELCM is able to request the generation of custom dashboards to a running Grafana [14]
instance where the experimenter can review the results generated by an experiment. In order
to generate the dashboard the ELCM will use the information contained in the Facility Registry,
where the platform administrators can include the definition of several Grafana panels

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 29 of 54

following the format described in Section 4.5. Grafana will use the results generated by the
experiment in order to populate the contents of the Dashboard’s panels.

Figure 6 RTT experiment dashboard generated by the ELCM

Differences from Release A:

- Additional values for configuring the color of elements and the rendering of dots in
line graphs have been added for Release B, but there are no important changes in
the functionality.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 30 of 54

4. ELCM IMPLEMENTATION

 Experiment life-cycle implementation

This section provides some additional details about the logic and implementation of the
experiment life-cycle, from the reception of an execution request until the end of the
experiment execution.

Figure 7 Main classes on the Experiment life-cycle implementation

Please note that in this section the following convention will be followed:

- Class names and their instances are presented in Italics style.
- Variable names and methods are presented in bold style.

4.1.1. The ExperimentRun class

The instances of the ExperimentRun class are responsible for storing the current information
about an experiment execution. It also contains references to the PreRunner, Executor, and
PostRunner instances, which are the entities that handle the execution of each independent
stage of the experiment.

When an experiment execution is received, the Scheduler will create a new instance of the
ExperimentRun class, identified by a unique integer Id. As part of the parameters required for
the creation of the ExperimentRun, it is necessary to provide a dictionary that contains all the
configuration values and variables required during the execution of the experiments. This

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 31 of 54

dictionary will be known as the Params of the experiment, and will be shared with the
PreRunner, Executor and PostRunner instances for communication within the different stages.

Two important values are always contained in the Params dictionary:

- The Descriptor (the Experiment Descriptor) contains all the information about the
experiment execution, including the test cases to run, the equipment to use among
others.

- The Configuration is the Platform Specific Configuration generated by the
Composer. It is created by the Composer using the Experiment Descriptor as input.

These two values are available for inspection during the experiment execution, and drive the
actions performed by the different Executors. The ExperimentRun class provides methods for
starting each stage independently, however, the logic for starting the correct stage and to
transition from one to the next resides in the Experiment Queue, which is handled by the
Scheduler. Likewise, the execution of each stage is delegated to the different Executors.

Differences from Release A:

- ExperimentRun now contains a list of Milestones, which are used to mark the
execution of certain actions during distributed experiments, as well as information
regarding the connection with the remote side during such experiments (not
pictured in Figure 7).

4.1.2. The ExecutorBase and Child classes

The minimal logic for executing code in parallel threads is contained in the Child class. This class
includes all the functionality for managing a separate thread where it’s possible to run specific
methods, as well as the logic for handling the creation and destruction of temporary folders (so
that every thread has its own location on the disk where they can store intermediate results)
and log files.

ExecutorBase, that extends the Child class, provides the extra functionality that is common to
all the Executors (PreRunner, Executor and PostRunner). This includes information about when
the Executor was created, when it started and finished its execution, and the list of messages
that have been generated. These messages are separated from the full logs and provide a fast
way for tracking the progress of the execution. For example, a new message will be generated
when the Executor starts processing a new Task.

All the executors run a series of Tasks. In the case of the PreRunner and PostRunner, this list is
static and common to all experiments. The Tasks performed by the Executor are generated by
the Composer, depending on the test cases and UEs selected in the experiment, and are
available as the RunTasks variable contained in the Platform Specific Configuration.

Differences from Release A:

- ExecutorBase now saves the location of every file generated by an executor, which
can later be collected and saved along with other experiment execution
information.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 32 of 54

4.1.3. Tasks

In the context of the Experiment Life Cycle Manager, a Task is the minimal action that must be
performed in order to run an experiment, and may involve delegating the execution to an
external entity. For example, a Task may be used in order to execute a TAP TestPlan that will
perform some measurements, running a script through the command line for configuring some
equipment, or sending values to an InfluxDB database. Tasks may run for as long as needed,
but only one Task can run on a given executor at a time.

Like in the ExperimentRun class, Tasks receive a dictionary of parameters that further refine
their behavior, and it’s possible to conditionally run a task depending on the values contained
in this dictionary.

The following Task types are available for use during the definition of the implementation of a
certain test case, or for the configuration of certain UEs:

- Run.CliExecute: Executes a script or command through the command line.
- Run.CompressFiles: Generates a Zip file containing all of the specified files and

folders.
- Run.CsvToInflux: Parses the contents of a CSV file, and sends the values to the

configured Influx database.
- Run.Delay: Performs a timed wait.
- Run.Message: Adds a message to the execution log, using the configured severity

level.
- Run.Publish: Saves one or many new (key, value) pairs, making them available for

variable expansion.
- Run.PublishFromFile and Run.PublishFromPreviousTaskLog: Reads the contents of

a file or the previous task’s log, looking for lines that match a specific regular
expression pattern. The groups found on the last match are published for variable
expansion.

- Run.SingleSliceCreationTime: Retrieves the Slice Creation Time metrics for the
network slice deployed during the Pre-Run stage from the Slice Manager, and sends
these values to the configured InfluxDB database.

- Run.SliceCreationTime: Provides a ready to use implementation of the Service
Creation Time test case that can be seen in Section 4.2.1.6 of Deliverable D6.2 [10].
The task performs several cycles of slice creation and deletion, recording the Slice
Creation Time values of each iteration.

- Run.TapExecute: Executes a TAP test plan, with the possibility of configuring
external parameters.

Additionally, the ELCM can be extended with new Task types, depending on the particular
needs of a platform. The process for creating new Task types is documented in Section 4.1.1.2
of Deliverable D5.3 [9].

Differences from Release A:

- Release A only provided the Message, CliExecute and TapExecute tasks.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 33 of 54

 Composer

The Composer is the entity that generates the Platform Specific Configuration (the set of
configuration values and Tasks that need to be run in order to perform an experiment
execution). This configuration (an instance of the PlatformConfiguration class) is generated by
using the Experiment Descriptor received as part of the execution request as well as the
contents of the Facility Registry.

Figure 8 PlatformConfiguration and auxiliary classes

Tasks are saved in the form of a TaskDefinition, which is the minimal information required for
creating an instance of the actual Task that will be run. The Task type is saved as a ClassVar
Python variable, which is not instantiated until the Task execution is about to start. This is due
to the existence of the variable expansion procedure: Since the parameters for the Task may
include values that are not known before all the previous Tasks have finished their execution,
it is better to delay the instantiation until the Task is really needed, and setting their parameters
only once.

Along with the list of Tasks to be run, the configuration saves information about the required
resources and network services. Initially, only the network service Id and Location are set, while
the SliceId and Requirements values are obtained during the deployment step of the Pre-Run
stage. The requirements are requested to the Slice Manager during the feasibility check, and
the SliceId is defined once the network slice has been instantiated.

Finally, the Platform Configuration instance also includes information about the list of Grafana
panels that will later be used by the Dashboard Generator.

4.2.1. The composition process

The process followed by the Composer in order to generate the Platform Specific Configuration
is as follows:

- As part of the Experiment Descriptor, the Composer receives:
o A list of test cases and UEs.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 34 of 54

o A list of network service ids and their deployment location.
- For each of the UEs selected, the Composer will add to a temporary list the

information of all the tasks that belong to that particular UE, as a TaskDefinition
instance. For example, for an Experiment Descriptor that contains the ‘TestUE’
presented in Listing 1, the composer adds two ‘Message’ tasks with orders 1 and
10.

- For each Test Case, the Composer will add their actions to the same list. Following
the example in Listing 2, the Composer adds a ‘SingleSliceCreationTime’ task with
order 5. Additionally, if the test case contains the definition of dashboard panels,
these are used to generate DashboardPanel instances and added to the
DashboardPanels list, which will be used during the Grafana dashboard generation
presented in Section 4.5.

- The Composer generates the final list of Tasks by sorting the temporary list following
the ‘Order’ values. This process generates the contents of the RunTasks list, which
is used during the Run stage of the experiment execution.
If multiple tasks share the same order, they will be run with undetermined
precedence. For this reason, it’s important to define tasks that configure and
initialize the equipment with low order values, measurement tasks in the middle
and task that finalize the processes with higher ones.

- The Composer traverses the final list of Tasks, and adds any requirements to the
Requirements list. In our example, this list would contain ‘UE1’.

- Each network service included in the Experiment Descriptor is used to generate an
NsInfo instance, and added to the NetworkServices list. This information, along with
the Slice and Scenario values of the Experiment Descriptor, will be used during the
Network Services deployment (Section 4.3).

Differences from Release A:

- The Platform Specific Configuration now contains information about the
requirements of the experiment, both physical resources of the platform and for
the deployment of network services.

 Experiment execution workflow

The general workflow during the execution of experiments is common to all of the experiment
types supported by the ELCM. However, there are certain differences in the followed approach,
which are summarized in this section.

4.3.1. Standard and custom experiments

All experiments follow the general workflow of Standard experiments, which consist in the
execution of a common Pre-Run stage, the execution of a test case(s) and UEs specific set of
Tasks, and finally a common Post-Run stage.

Custom experiments also allow the definition of certain configuration parameters, which
experimenters can customize, creating a test case execution that is more fine-tuned to their
needs. This functionality makes use of the variable expansion capabilities provided by the

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 35 of 54

ELCM, mapping certain values to the contents of the `Parameters` field included in the
Experiment Descriptor at run time.

4.3.2. MONROE experiments

MONROE [11] experiments delegate the execution of the experiment to a physical or virtual
MONROE node available in the platform, making use of the MONROE TAP plugin and TAP agent
developed as part of the 5Genesis project. From the point of view of the ELCM, a special kind
of experiment acts as a wrapper.

The execution of this kind of experiment consists of the execution of a single Task, which
performs the execution of a pre-created TAP test plan that drives the communication with the
MONROE node and defines the required meta-data for integrating with other 5Genesis
components. The collection of steps contained in this TAP test plan can be seen in Figure 9.

The required information, such as the MONROE experiment to run and the experiment
parameters are taken from the Application and Parameters fields on the Experiment
Descriptor, and are set using external parameters when performing the execution of the TAP
test plan.

Figure 9 TAP test steps for MONROE experiments

Since MONROE nodes can execute a large variety of different test cases, it is not possible to
perform the creation of customized dashboards for every experiment type. For this reason, the
automatic creation of dashboards documented in Section 4.5.1 was developed.

4.3.3. Distributed experiments

Distributed experiments are handled using the same workflow as standard experiments.
However, two coordination steps are performed at the start and end of the experiment
execution. Additionally, new Task types are available for use during the Run stage, which
facilitate the coordination and information exchange between the involved platforms. These
additional procedures make use of the East/West interface defined in Section 5.2.

The following Task types are available during a distributed experiment execution:

- Remote.WaitForMilestone: Halts the execution of additional tasks until the remote
side specifies that a certain milestone has been reached.

- Remote.GetValue: Halts the execution of additional tasks until a certain value can
be obtained from the remote side. When received, the value will be published
internally and available for variable expansion.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 36 of 54

The creation of a distributed experiment is a collaborative activity between the two platforms
involved in the execution of the experiment. Each platform is responsible for the definition of
their set of actions, as only they have the required knowledge on the usage of their equipment,
but must agree with the other platform's administrators about any necessary coordination and
information exchange that is required in order to successfully execute the test case.

The general workflow during a distributed experiment is as follows:

- The Dispatcher of one of the platforms (the Main platform) receives a distributed
experiment execution request, either from the Portal or through the Open APIs.

- The Dispatcher performs the initial coordination, contacting the ELCM of its own
platform and the Dispatcher of the remote platform (the Secondary platform).

- Each side performs the execution of their tasks as normal, unless they reach a point
where they must coordinate:

o If one of the platforms must wait until the remote side has performed some
actions:

▪ The waiting platform can use the WaitForMilestone task.
▪ The other platform can indicate that the actions have been

performed using the AddMilestone task.
o If one of the platforms requires certain information from the remote side:

▪ The querying platform can use the GetValue task.
▪ The other platform can set the value requested using any of the

Publish, PublishFromFile and PublishFromPreviousTaskLog tasks.
- Once both platforms execute all their tasks, the Main platform requests all the

generated files and results from the Secondary platform, so that they are saved
along with the ones generated by the Main platform and available to the
experimenter.

Differences from Release A:

- Only Standard experiments were supported during release A.

 Network Services deployment

The deployment of network services and the configuration of the network slice to be used
during the experiment is performed in the Pre-Run stage of the experiment execution. This slice
remains active during the Run stage and is automatically decommissioned when the
experiment reaches the Post-Run stage.

The ELCM delegates the creation and decommissioning of network slices to the Katana Slice
Manager [6] by using the corresponding southbound interface. The ELCM uses the information
received in Experiment Descriptor along with the definitions contained in the Platform Registry
in order to create a NEST payload that is sent to the Slice Manager upon creation of the network
slice. The Slice Manager will respond with a network slice id, which is saved by the ELCM and
available to the experiment’s Tasks. Finally, the ELCM requests the decommissioning of the
network slice, using the received identifier as reference.

For the creation of the NEST payload, the ELCM combines three different pieces of information:
A Base slice descriptor identifier, a Scenario identifier and a list of network service identifiers
along with the location where they will be deployed.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 37 of 54

The Base slice is a reference to a slice description available in the Katana Slice Manager. These
descriptions define the default values for a certain kind of network slice. A scenario is a
collection of configuration values that are used to further customize the behavior of a deployed
slice, and are used to overwrite some of the values defined in the Base slice descriptor. These
values are defined as YAML files contained in the ̀ Scenarios` folder. Finally, the network service
ids are references to Network Services that have been onboarded in the repository provided
by the Open API.

Using this information, the ELCM creates a NEST payload, which is composed by three main
parts:

- A reference to a base slice descriptor, from those available in the Katana Slice
Manager.

- A collection of values that are to be overridden from the base slice descriptor, taken
from the selected Scenario.

- A possibly empty list of references to Network Services that are to be included as
part of the Network Slice.

The format of a generated NEST payload can be seen in Listing 3.

{

 "base_slice_descriptor": {

 "base_slice_des_id": "<Base Slice Descriptor reference>",

 // Values from the selected Scenario are included here

 },

 "service_descriptor": {

 "ns_list": [

 {

 "nsd-id": "<Network Service ID>",

 "placement": "<Network Service Location>",

 } //, [...]

]

 }

}

Listing 3 NEST payload format

 Grafana dashboard generation

Platform administrators can define a set of Grafana dashboard panels for each of the test cases
supported in the facility. The purpose of these panels is to display a subset of the most
important or representative values measured by an experiment execution, and is independent
to the in-depth capabilities provided by the 5Genesis Analytics module.

The parameters in Table 2 can be used to specify the contents and visualization format of each
panel.

 Parameter Type Description

Type String Panel type. Available values are ‘SingleStat’ (gauges, numeric
values) and ‘Graph’ (time series graph)

Name (Optional) String Name of the panel, if not set a default name will be generated
from the Measurement and Field values

Measurement String Measurement name

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 38 of 54

Field String Field name

Unit (Optional) String Results unit

Size List[int] Size of the panel (height, width)

Position List[int] Panel position in the dashboard (x, y)

Color List[int] Graph or text colors. For Gauges this is a list of 3 colors,
otherwise a single value.

G
ra

p
h

Lines Boolean True to display as line graph, False to display as bars

Percentage Boolean Whether the graph represents a percentage or not

Interval (Optional) String Time interval of the graph. If not set, the default Grafana interval
will be used.

Dots Boolean Display dots along with the graph or bar

Si
n

gl
eS

ta
t

Gauge Boolean True to display as a gauge, false to display as a single numeric
value

MaxValue (Optional) Float Maximum expected value of the gauge, 100 if not set

MinValue (Optional) Float Minimum expected value of the gauge, 0 if not set

Table 2 Available parameters for Grafana panel definition.

By using the information contained in the Dashboard section, the Dashboard generator will
automatically create a JSON description of the complete Dashboard. This description is then
sent as payload to the appropriate endpoint on the Grafana Dashboard REST API, in order to
trigger the generation of the final dashboard.

Figure 10 Throughput Grafana dashboard

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 39 of 54

4.5.1. Grafana dashboard auto-generation

The ELCM is able to generate additional panels if certain values appear on the names of the
generated TAP results. For this feature to work, an additional result listener (AutoGraph) must
be enabled in TAP.

This functionality is especially useful for the execution of MONROE experiments (Section 4.3.2),
which already require the usage of TAP, and where the creation of customized dashboards is
impossible given the variability of such experiments.

This feature works as follows:

- During the experiment execution within TAP, the AutoGraph result listener inspects
the generated results for names that include information about panel generation.

- At testplan end, the result listener generates a message that contains the
description of each panel to generate.

- If the test case includes a dashboard definition, the ELCM will generate the panels
described in it first.

- The logs generated during the experiment execution will be parsed, looking for
messages generated by the AutoGraph result listener.

- For each message detected, a new panel will be generated after the ones described
in the test case.

In order to be detected by the result listener, the result name must have the following format:

“<Result name> [[<Panel type>]]” or “<Result name> [[<Panel type>:<Unit>]]”

Where:

- <Result name> is the name of the panel
- <Panel type> is one of [`Si`, `Ga`, `Li`, `Ba`]:

o ‘Si’ stands for ‘Single’
o `Ga` stands for ‘Gauge’
o ‘Li’ stands for ‘Lines’
o ‘Ba’ stands for ‘Bars’

- If present, ‘Unit’ is the unit of the results, which must be a valid Grafana value.

Differences from Release A:

- The ‘Colors’ and ‘Dots’ parameters did not exist during Release A.
- The auto-generation procedure is exclusive to Release B.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 40 of 54

5. ELCM INTERFACES

 Northbound interfaces

5.1.1. Open APIs

The ELCM provides the implementation of several endpoints of the Open APIs, in particular
those related to experiment handling and metadata (Table 3) and facility description (Table 4).

It should be noted that these endpoints are not exposed directly to the experimenter, and are
instead provided via the Dispatcher component, which handles the user authentication before
any possible response and provides a unified interface through the Open APIs.

Endpoint Method

/api/v0/run POST Payload Experiment descriptor in JSON format. See Figure 3.

Response {“ExecutionId”: int}

Notes Exposed as /elcm/api/v0/run on the Open APIs. The
Dispatcher verifies the payload before redirecting to the
ELCM

/execution/<id>/cancel GET Payload None

Response None

Notes Exposed as /elcm/execution/<id>/cancel on the Open
APIs.

/execution/<id>/descriptor GET Payload None

Response Experiment descriptor in JSON format. See Listing 4.

Notes Exposed as /elcm/execution/<id>/descriptor on the
Open APIs.

/execution/<id>/logs GET Payload None

Response {

 “Status”: str

 “PreRun”:<LogInfo>

 “Executor”:<LogInfo>

 “PostRun”:<PostRun>

}

Notes Exposed as /elcm/execution/<id>/logs on the Open
APIs. Returns the logs of the three executors of the
selected experiment run, along with their severity levels

(see Listing 5).

Table 3 Experiment related endpoints exposed through the Open APIs

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 41 of 54

Endpoint Method

/facility/baseSliceDescriptors GET Payload None

Response { “SliceDescriptors”: List[str]}

Notes Exposed as /elcm/facility/baseSliceDescriptors on the
Open APIs. The actual list of base slice descriptors is
retrieved from the Katana Slice Manager.

/facility/testcases GET Payload None

Response {

 "TestCases": [

 {

 "Distributed": boolean,

 "Name": str,

 "Parameters": Array[str],

 "PrivateCustom": Array[str],

 "PublicCustom": boolean,

 "Standard": boolean

 }

]

}

Notes Exposed as /elcm/facility/testcases on the Open APIs,
however, the Dispatcher filters the returned
information based on the user credentials. Users of the
Open APIs receive a list of test cases available to their
account.

/facility/ues GET Payload None

Response { “UEs”: Array[str]}

Notes Exposed as /elcm/facility/ues on the Open APIs.

/facility/scenarios GET Payload None

Response { “Scenarios”: Array[str]}

Notes Exposed as /elcm/facility/scenarios on the Open APIs.

Table 4 Facility related endpoints exposed through the Open APIs

The following figures show the format of more complex data models received or returned by
the interface.

{

 "Application": str, // May be null

 "Automated": bool,

 "ExclusiveExecution": bool,

 "ExperimentType": str,

 "Extra": Object[str, str] // May be empty,

 "NSs": Array[Array[str]], // (nsd id, vim location) pairs. May be empty,

 "Parameters": Object[str, str], (may be empty)

 "Remote": str, // May be null

 "RemoteDescriptor": <Descriptor>, // Same format as an Experiment

 // Descriptor, but without the

 // “RemoteDescriptor” field. May be

 // null

 "ReservationTime": int, // May be null

 "Scenario": str, // May be null

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 42 of 54

 "Slice": str, // May be null

 "TestCases": Array[str],

 "UEs": Array[str], // May be empty

 "Version": str

}

Listing 4 Experiment descriptor format

{

 “Count”: {

 “Debug”: int,

 “Info”: int,

 “Warning”: int,

 “Error”: int,

 “Critical”: int

 },

 “Log”: Array[Array[str]] // List of (severity, message) pairs

}

Listing 5 LogInfo format

5.1.2. 5Genesis Portal

Though most of the communication between the Portal and the ELCM is performed via the
Open APIs in Release B, as opposed to the direct communication existing during Release A, the
ELCM still sends the real-time updates of a particular experiment execution directly to the
Portal.

The information transmitted includes the current stage of the execution, the percentage of
completion and a descriptive message about the current status. Given that this information
changes at a fast rate, it was decided not to make this information available through the Open
APIs and it is only used to improve the user experience in the 5Genesis Portal.

 East/West interface

The East/West interface is used for communication between two different ELCM instances
during a distributed experiment execution. It provides the endpoints needed for coordination
and information exchange during the execution of the experiment, as well as for the retrieval
of files and results from one of the platforms to the other, once the execution ends. Finally, the
interface exposes an additional endpoint that is used by the Dispatcher during the initial
coordination before the execution starts.

Endpoint Method

/distributed/<id>/peerDetails POST Payload {“execution_id”: int}

Response { “success”: boolean, “message”: str}

Notes Used by the Dispatcher during the initial coordination
phase. Sets the execution ID of the remote side of the
experiment.

/distributed/<id>/status GET Payload None

Response {

 “success”: boolean,

 “message”: str,

 “status”: str,

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 43 of 54

 “milestones”: Array[str]

}

Notes Used to retrieve the execution status and list of
milestones reached by a distributed experiment.

/distributed/<id>/values

/distributed/<id>/values/<name>

GET Payload None

Response {

 “success”: boolean,

 “message”: str},

 // Either

 “values”: Object[str, str],

 // or

 “value”: str

}

Notes Returns a complete dictionary of values if no <name>
was specified, or the value of that variable if it was
specified.

/distributed/<id>/files GET Payload None

Response The logs in txt format and any file generated by the
execution in a single zip file, as a binary download.

Notes This file is retrieved from the Secondary platform upon
execution end, and is saved along with the files from the
Main platform in the Experiment Registry.

/distributed/<id>/results GET Payload None

Response A JSON payload containing all the results (see Figure 16).

Notes These results are retrieved from the Secondary platform
upon execution end, and are sent to the Results
Repository of the Main platform.

Table 5 East/West interface endpoints.

The /distributed/<id>/results endpoint is used for transferring the contents of the Secondary
platform’s Results Repository to the Main platform, so that they are available at a single point
for the experimenter. The chosen format tries to include all the information available in an
InfluxDb, but removing a large amount of redundant information in order to reduce the size of
the transferred payload.

Along with the ‘success’ and ‘message’ fields that are common to all of the East/West interface
responses, the payload includes a list of all the returned measurement names, and a dictionary
that contains the data from all the measurements. This data is separated in (possibly) several
pieces, where each piece shares the same set of tags. This eliminates the need of sending the
tag values along with the fields for every point.

Along with the tags, each piece contains a sorted list of the field’s name. Finally, the ‘points’
field contains a list of lists, where each internal list is formed by the timestamp of the point (at
the first place), followed the field values in the same order as in the header.

{

 “success”: boolean,

 “message”: str,

 “measurements”: Array[str], // List of returned measurement names

 “data”: Object[str, <Measurements>]

}

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 44 of 54

Where

<Measurements> = [

 {

 “tags”: Object[str, str]

 “header”: Array[str] // Sorted list of field names

 “points”: Array[Array[timestamp, value1, value2, …]]

 }, …

]

Listing 6 East/West results payload

When the payload is received, the Main platform replaces some of the tags (such as the
execution id) with the values of the Main platform and uploads the received points to the
InfluxDb database. All the received measurement names are prepended with “Remote_” in
order to differentiate them and avoid overwriting values generated in the Main platform.

 Southbound interfaces

5.3.1. Katana Slice Manager

The ELCM is able to communicate with the Katana Slice Manager [6] by sending requests to the
REST API exposed by this entity. The ELCM makes use of several endpoints, as listed in Table 6,
in particular those related to the management of network slices, resource usage and available
network service descriptors and base slice descriptors:

Endpoint Method Notes

/api/slice POST Requests the creation of a new slice, using a NEST
descriptor as payload.

/api/slice/<id> GET Retrieves information about the status of an slice

DELETE Requests decommission of an existing slice.

/api/slice/<id>/time GET Retrieves information about the deployment time of an
existing network slice.

/api/resources GET Retrieves the current computation, memory and storage
usage on the VIMs in the lower layers, as well as the
maximum available.

/api/nslist GET Retrieves information about all the available network
service descriptors, in particular the computation,
memory and storage requirements.

/api/base_slice_des GET Retrieves the list of all available base slice descriptors
defined in the Katana Slice Manager.

Table 6 Slice Manager endpoints used by the ELCM

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 45 of 54

5.3.2. Network management system (NMS) and platform infrastructure

The interaction with heterogeneous components that are part of the Network Management
System and other elements in the platform infrastructure is performed by making use of any of
the several Tasks available in the ELCM. In particular Run.TapExecute, which allows the
execution of TAP test plans, and Run.CliExecute, which can be used for executing arbitrary
commands and scripts using the command line interface.

5.3.2.1. TAP (OpenTAP) as execution environment

TAP [12], or OpenTAP can be considered an execution environment, in the same way as shell
scripting, but the number of additional features included in TAP (such as the result handling
capabilities or the ability to abstract different components of a Platform as Instruments) make
it ideal for certain automation tasks that are in line with the requirements of the 5Genesis
Platforms. For this reason, helper TAP plugins have been developed in the context of the
5Genesis project, which include several test steps and result listeners that improve the
integration of TAP with other components of the facility, such as the Analytics Module. These
TAP plugins include:

- A set of test steps (‘Set Execution Id’ and ‘Set Execution Metadata’) that can be used
for setting the value of several tags, which are required for integrating with the
Analytics Module.

- An additional test step (‘Mark Start of Iteration’) which eases the implementation
of test case iterations.

- A TAP result listener that is able to send the generated results in a format that is
compatible with the Analytics Module. This result listener sends tagged results to
the InfluxDb [13] database that acts as Results Repository. For details about this
result listener please refer to section 5.3.3.2. of this deliverable.

- A CSV result listener which includes the same capabilities as the InfluxDb result
listener.

- Instruments and steps for executing commands on remote machines using SSH, and
for sending/retrieving files through SCP.

(a) Integration of TAP test plans

Figure 11 shows an example testplan that includes all current the requirements for usage on
5Genesis facilities. The first step (“Set Execution ID”) will define the global execution identifier
for the results. The actual value can be set using the “ExecutionID” external parameter, which
means that the ELCM can modify this parameter with the correct value during the experiment
execution.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 46 of 54

Figure 11 Example TestPlan and external parameters for ELCM

The second is a default step included in TAP, however, the number of repetitions of the loop
has been externalized, so that it can be modified easily with the correct number of iterations.

“Mark Start of Iteration” is a custom step that keeps track of the current iteration number and
configures any compatible result listener (in particular the InfluxDb result listener) so that every
generated result will be tagged with the correct iteration number. The iteration value will
increase automatically every time this step is executed inside a loop.

The fourth step (iPerf Agent) is provided as an example of the actions that can be performed
during an iteration. In this case the step will use the remote iPerf agent detailed in Deliverable
D3.5 [7] to start an iPerf client instance that will run for some time. Once this period finishes
the step will recover every result generated and publish them so that they are sent to the
InfluxDb database, correctly tagged, by the InfluxDb result listener. The IP address and port of
the iPerf server have also been defined as external parameters (“Host” and “Port”) so that they
can easily be customized by the ELCM or a user.

Using the Run.TapExecute task it is possible to perform the execution of this test plan as part
of an experiment coordinated by the ELCM. The configuration of this Task includes the location
of the test plan file to execute and the value of every external parameter to be configured. In
order to integrate with the platform, every test plan executed as part of a 5Genesis experiment
requires a configurable Execution ID external parameter, which will be used for identifying the
experiment results.

(b) SSH TAP Plugin

SSH can be used as an easy integration path for equipment that supports this protocol, giving
platform administrators the possibility of remotely controlling the equipment or transferring
files from and to the device.

The SSH TAP Plugin comprises a TAP Instrument and three test steps. The instrument contains
all the configuration values of the machine that will be controlled using SSH (Figure 12).

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 47 of 54

Figure 12 SSH Instrument configuration

The SSH instrument is able to connect to a remote host supporting username and password, or
private key based authentication with an optional passphrase.

The following test steps are included in the plugin:

- Run SSH Command: This step is able to execute a command through SSH in the
configured instrument. The step can execute this command synchronously (waiting
for the command or script to end) or in the background. The step can also be
configured to run the command as administrator (if the user has the required
privileges in the target machine). The available settings for this step can be seen in
Figure 13.

Figure 13 Run SSH Command step settings

- Retrieve Background SSH Command: This step can be used in order to synchronize
the test plan execution with an SSH command that was started in the background.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 48 of 54

This step can be configured so that the command is immediately stopped if it has
not been completed, or to continue waiting. If a Timeout value has been configured
in the “Run SSH Command”, it will be honored.

Figure 14 Retrieve Background SSH Command step settings

- SCP Transfer: This step can be used in order to transfer files and directories from
and to the remote machine using the SCP protocol.

Figure 15 SCP Transfer step settings

5.3.2.2. Generic script execution and additional integration

In order to support the management of generic components, the ELCM is able to handle the
execution of generic command line interface scripts and commands. Using this capability,
Platform Administrators can make use of already existing programs, either developed in house
or provided by the component’s manufacturer, or create new ways of interfacing with the
equipment if required.

In addition to using complex scripts and programs, the ‘Run.CliExecute’ task can be used for
running isolated commands. This can be useful, for example, for using existing command line
utilities such as ‘curl’ or ‘Invoke-RestMethod’. If the component to control exposes a REST API,
these utilities can be used to send orders to the component or retrieve information.

For platform equipment that is commonly used, it is possible to create new ELCM Tasks that
are fine-tuned for handling that specific equipment or kind of interface. Information about the
development process for new tasks can be seen in Deliverable D5.3 [9].

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 49 of 54

5.3.3. Analytics module and Results Registry

Due to the support of several heterogeneous methods for performing the actions required for
the execution of a test case in the 5Genesis facilities, the ELCM does not provide a single way
of managing the retrieval of the results and the integration with the Analytics module. Instead,
several guidelines exist (regarding the format of the results and the contained information),
along with a set of helper utilities that aim to automate and ease the integration in each
platform.

In general, any tool can send results in a compatible way with the 5Genesis facilities, provided
that:

- The results can be expressed as InfluxDb [13] points. I.e. each result has an
associated timestamp and can contain as many simple values (boolean, integer,
floating point or string) as needed (but no composed values). Each value is
associated with a field name.

- Every value is saved with an associated ‘Execution Id’ tag, which univocally identifies
the experiment execution that generated the result.

- If the experiment consists of multiple different iterations, each result must indicate
the iteration, which generated it, using the ‘_iteration_’ tag.

The following is a description of several helper utilities for integrating with the Analytics Module
and Results Registry.

5.3.3.1. InfluxDb Helper class and CsvToInflux

The ELCM includes the implementation of a helper class, which is able to send arbitrary results
to the InfluxDb instance that acts as Results Registry in the platform. This helper is used by
certain ELCM Tasks that are able to send results automatically (such as the
‘Run.SliceCreationTime’ task), and also provides functionality to the ‘Run.CsvToInflux’ Task.

The CsvToInflux Task can be used for sending the contents of a CSV file to the InfluxDb database,
correctly tagged with all the required metadata for integration with the Analytics Module. Using
this Task, platform administrators can make use of any existing equipment that is able, either
directly or by using an additional tool, to save measurements or results as CSV files.

5.3.3.2. InfluxDb Result Listener

The InfluxDb result listener for TAP is able to automatically send all the results generated by
every TAP test plan to the InfluxDb instance tagged with the required metadata. The Analytics
module can then retrieve these results and extract the available KPIs from them.

Additionally, the InfluxDb Result Listener can send a selection (filtered by severity) of the log
messages generated during a test plan execution. This might be useful for debugging or for
extracting additional information from the results, correlating these values with the events
logged by TAP.

All results sent to InfluxDb must include a valid timestamp that corresponds to the moment
when the measurement was obtained. By default, the result listener will look for a field called
“Timestamp” (case ignored) that should contain the POSIX timestamp (the amount of time

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 50 of 54

elapsed since the midnight of January 1, 1970), however, in order to support TAP test steps
that do not follow this convention, it is possible to define certain rules for obtaining the
timestamp from other fields.

Figure 16 InfluxDb result listener settings

These rules can be defined by editing the “DateTime overrides” table in the result listener
settings (Figure 16). This table specifies the name of the result where the rule applies, as well
as the names of up to 2 fields (columns) that can be used to extract the timestamp. Additionally,
two “Format” columns specify the exact format of the timestamp. Examples of some possible
values for this table can be seen in Figure 17.

Figure 17 DateTime overrides

The result listener will also tag all the generated results with the correct Execution ID (as
specified by the ‘Set Execution ID’ or ‘Set Execution Metadata’ steps), and the iteration number
(controlled by the ‘Mark Start of Iteration’ step).

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 51 of 54

6. TESTING AND VALIDATION

Aside from the full validation process performed as part of Work Package 5, where a complete
5Genesis platform is deployed from the ground up in order to test the functionality and correct
integration of all the different components, several additional tests have been performed
during the development of the ELCM.

In order to iteratively test the new functionalities as they are created, the development
environment includes the pre-release version of other 5Genesis components, such as the
Portal, Dispatcher and Slice Manager, which provide fairly realistic conditions where the correct
operation of the ELCM can be tested.

During active development the integrated debugger of the Python IDE, which allows setting
breakpoints, inspecting the value of each variable and evaluate expressions in real time, is
extensively used. Since at this point there is still missing functionality, either in the ELCM itself
or on external components, it is common to simulate part of the logic using temporary debug
code, that, for example, injects a controlled set of data to the ELCM inputs or replies with the
‘correct’ output regardless of the conditions. Though not entirely realistic, this practice eases
the development process and allows fixing a large amount of issues at a fast rate, meaning that
fewer errors are introduced or discovered as new functionality is added to the components.

Figure 18 Python debugger

Given that the different 5Genesis components are more deeply coupled than during Release A,
an additional (intermediate) integration test was performed in the Málaga platform using an
initial set of Release B functionality. For this test, the pre-release versions of most of the
5Genesis components (Portal, Dispatcher, ELCM and Katana Slice Manager) were deployed in
a new test environment.

As a result of this intermediate integration, a small number of issues were discovered and fixed.
Moreover, several usability improvements were applied to the components, improving both

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 52 of 54

the installation process and the debugging of issues, paving the way to the final WP5 integration
of the components.

In parallel with the testing based on the execution of the code, the ELCM design has also been
validated using the model checking technique. Model checking is especially relevant to analyse
concurrent systems with many interaction points, in order to locate potential execution
sequences that leave to deadlocks or other execution errors. The basis of this method is the
creation of an abstract model of the original software that can be exhaustively analysed to
generate the execution graph produced by the interleaving of the processes. Such exhaustive
analysis can be enriched with specific properties to be checked in all the traces in order to find
more specific errors beyond deadlocks or live locks.

The language used to create the model of the ELCM is Promela, while the model checker used
to analyse the system was SPIN [15]. The work done in the project, partially reported in [16],
consisted in building a Promela model of the entities presented in Figure 2 the definition of a
number of specific properties using Temporal Logic, and the verification work. Figure 19 shows
the output of the process for a test where the model contains the parallel execution of three
experiments. The most relevant results presented in the figure are the number of errors (0),
the number of global states analysed (more than 171 M) and the hash factor, which indicates
the quality of the analysis (149.9).

Figure 19 ELCM model checking results

The conclusion of the verification work with Promela and SPIN is that the current design of
the ELCM is ready to support the execution of concurrent experiments.

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 53 of 54

7. CONCLUSIONS

The report presented the activities performed during the design and development of the
experiment lifecycle manager of the 5GENESIS facility [17]. The ELCM has been developed from
the ground up using Python, and uses different interfaces for communicating with specific
elements of the platforms. Additionally the ELCM exposes an internal web administration
interface developed in Flask. The ELCM is the entity that performs the management,
orchestration and execution of Experiments in the 5GENESIS Platforms, and has been
developed from the ground up as part of the 5Genesis Open Experimentation Framework.

In this document the reader can also find details about the different interfaces of this entity,
namely the northbound interface (exposed by the ELCM), the southbound interfaces (used for
controlling the different elements of the 5GENESIS facilities) and the East/West interface (used
for communicating two different ELCM instances during a distributed experiment execution).

5GENESIS D3.16 • Experiment Lifecycle Manager (Release B)

© 5GENESIS Consortium
Page 54 of 54

8. REFERENCES

[1] Welcome to Python.org [Online], https://www.python.org/, Retrieved 09/2019
[2] Flask [Online], https://palletsprojects.com/p/flask/, Retrieved 09/2019
[3] 5GENESIS Consortium, D2.2 Initial overall facility design and specifications:

https://5genesis.eu/wp-content/uploads/2018/12/5GENESIS_D2.2_v1.0.pdf
[4] 5GENESIS Consortium, D2.3 Initial planning of tests and experimentation:

https://5genesis.eu/wp-content/uploads/2019/02/5GENESIS_D2.3_v1.0.pdf
[5] 5GENESIS Consortium, D2.4 Final report on facility design and experimentation

planning: https://5genesis.eu/wp-
content/uploads/2020/07/5GENESIS_D2.4_v1.0.pdf

[6] 5GENESIS Consortium, D3.3 Slice management: https://5genesis.eu/wp-
content/uploads/2019/10/5GENESIS_D3.3_v1.0.pdf

[7] 5GENESIS Consortium, D3.5 Monitoring and analytics: https://5genesis.eu/wp-
content/uploads/2019/10/5GENESIS_D3.5_v1.0.pdf

[8] 5GENESIS Consortium, D3.15 Experiment and Lifecycle Manager:
http://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.15_v1.0.pdf

[9] 5GENESIS Consortium, D5.3 Documentation and supporting material for 5G
stakeholders: https://5genesis.eu/wp-content/uploads/2020/07/5GENESIS-
D5.3_v1.0.pdf

[10] 5GENESIS Consortium, D6.2 Trials and experimentation (cycle 2):
https://5genesis.eu/wp-content/uploads/2020/08/5GENESIS_D6.2_v1.0_FINAL.pdf

[11] MONROE Project [Online], https://github.com/MONROE-PROJECT
[12] Test Automation Platform (TAP) [Online], https://www.keysight.com/en/pc-

2873415/test-automation-platform-tap, Retrieved 09/2019
[13] InfluxDB: Purpose-Built Open Source Time Series Database [Online],

https://www.influxdata.com/, Retrieved 09/2019
[14] Grafana Labs [Online], https://grafana.com/, Retrieved 09/2019
[15] G. Holzmann, SPIN Model Checker, The: Primer and Reference Manual, Addison-

Weasley, 2011
[16] D. Arrebola, MM Gallardo, Modelling and verification of 5GENESIS ELCM with SPIN,

BsC Thesis, Univ. Malaga, 2021
[17] H. Koumaras et al., "5GENESIS: The Genesis of a flexible 5G Facility," 2018 IEEE 23rd

International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), Barcelona, Spain, 2018, pp. 1-6, doi:
10.1109/CAMAD.2018.8514956.

https://www.python.org/
https://palletsprojects.com/p/flask/
https://5genesis.eu/wp-content/uploads/2018/12/5GENESIS_D2.2_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/02/5GENESIS_D2.3_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.3_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.3_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.5_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.5_v1.0.pdf
http://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.15_v1.0.pdf
https://github.com/MONROE-PROJECT
https://www.keysight.com/en/pc-2873415/test-automation-platform-tap
https://www.keysight.com/en/pc-2873415/test-automation-platform-tap
https://www.influxdata.com/
https://grafana.com/

