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Abstract—The lack of publicly available large scale measure-
ments has hindered the derivation of empirical path loss (PL)
models for Narrowband Internet of Things (NB-IoT). Therefore,
simulation-based investigations currently rely on models con-
ceived for other cellular technologies, which are characterized,
however, by different available bandwidth, carrier frequency,
and infrastructure deployment, among others. In this paper,
we take advantage of data from a large scale measurement
campaign in the city of Oslo, Norway, to provide the first
empirical characterization of NB-IoT PL in an urban scenario.
For the PL average term, we characterize Alpha-Beta-Gamma
(ABG) and Close-In (CI) models. By analyzing multiple NB-
IoT cells, we propose a statistical PL characterization, i.e., the
model parameters are not set to a single, constant value across
cells, but are randomly extracted from well-known distributions.
Similarly, we define the PL shadowing distribution, correlation
over distance, and inter-site correlation. Finally, we give initial
insights on outdoor-to-indoor propagation, using measurements
up to deep indoor scenarios. The proposed models improve PL
estimation accuracy compared to the ones currently adopted
in NB-IoT investigations, enabling more realistic simulations of
urban scenarios similar to the sites covered by our measurements.

Index Terms—Cellular Internet of Things, massive Machine
Type Communications, Narrowband Internet of Things, Path
Loss Empirical Models

I. INTRODUCTION

Standardized by 3rd Generation Partnership Project (3GPP)
in Release 13 (Rel-13), Narrowband Internet of Things (NB-
IoT) is a leading solution in the context of Low Power
Wide Area Networks (LPWANs) [1]. It enables low-cost and
power-efficient IoT applications by exploiting the cellular
infrastructure [2], focusing on massive Machine Type Commu-
nication (mMTC) services, such as smart cities, environmental
monitoring, and industrial automation, among others [3] [4].

Nowadays, many mobile operators are launching NB-IoT
networks worldwide [5], while the research community is
addressing several theoretical aspects aiming at deriving solu-
tions for system optimization. As for all wireless technologies,
validation of such solutions is often performed via simulations,
thus requiring realistic modeling assumptions.

In this context, a key aspect is radio propagation modeling
[6], e.g., in terms of path loss (PL) average and variable terms,
the latter caused by fading phenomena. Indeed, several re-
search and standardization activities focus on the derivation of
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realistic PL models for wireless systems. A common solution
is the use of so-called empirical models. These consist of
parametrized equations, and require real PL measurements for
fitting such equations, i.e., finding the values of the parameters
that minimize the difference between model estimates and real
measurements.

The derivation of an empirical model is often challenged by
the scarcity of large scale measurement campaigns. As also
observed in [7] [8], propagation measurements for cellular
systems often assume a single or a few base stations (also,
cells). Hence, models usually present fixed values of the
parameters (e.g., [9]–[11]). However, the above assumption
may be unrealistic in urban scenarios, since it would imply
similar PL characteristics for all cells, independent of the
environment where cells are deployed (e.g., areas with a
majority of high and newer buildings vs. areas with a majority
of low and older buildings, areas with high presence of public
green vs. areas with low presence of public green, and areas
with a majority of wide streets vs. areas with a majority of
narrow streets, among others) [12].

First attempts at deriving empirical models have focused
on a NB-IoT technology competitor, i.e., Long Range Wide
Area Network (LoRaWAN), due to a greater availability of
measurements [13]–[15]; LoRaWAN operates, however, in the
unlicensed spectrum, and exploits a dedicated infrastructure
and specific transmission settings, which limits the application
of the obtained models to NB-IoT. As a matter of fact, the
lack of publicly available large scale measurements has, so far,
hindered the derivation of PL models for NB-IoT. Therefore,
in lack of a better option, simulation-based evaluations of
NB-IoT have relied on models originally conceived for other
cellular technologies, such as Universal Mobile Telecommuni-
cations System (UMTS) and Long Term Evolution (LTE) (e.g.,
[16]–[27], among others). However, peculiar characteristics
of NB-IoT when compared with preexisting cellular tech-
nologies, e.g., in terms of occupied bandwidth, infrastructure
deployment, and operating scenarios (e.g., deep indoor), can
be expected to introduce remarkably different propagation
characteristics. This observation, confirmed by our results in
§V-B, where we compare NB-IoT against LTE, calls for a
NB-IoT specific PL assessment and model.

In this paper, we provide the first empirical characterization
of NB-IoT PL in an urban scenario. To do so, we exploit
a large scale measurement campaign executed in the city
of Oslo, Norway, preliminarily analyzed in [28] and made
available under an open-source license in [29]. The main
contributions can be summarized as follows:
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• We derive the parameters for the PL average term of two
empirical models: Alpha-Beta-Gamma (ABG) [30] and
Close-In (CI) [30] [31]. Since our measurements include
a large amount of NB-IoT cells from two operators, we
provide statistically extended models, with parameters not
fixed to a single value but spanning over distributions, as
derived in [12] for other cellular systems;

• We analyze the PL fading term based on shadowing, and
provide statistically extended models for its distribution
and correlation over distance, as preliminarily studied in
[32] for other cellular systems. Moreover, we provide
insights on the inter-site (also, inter-cell) shadowing cor-
relation; given a pair of cells, the shadowing experienced
in a common set of measurement points is correlated [7],
[8], [33]–[36];

• We validate our models across NB-IoT operators, and
also against LTE, thanks to the availability of LTE
measurements collected in the same campaign. Moreover,
we show that the proposed models improve PL estimation
accuracy compared to current state of the art, and enable
more realistic simulations of propagation in Oslo-like
urban areas, while preserving low model complexity;

• We exploit a set of (deep) indoor measurements to
provide preliminary indications on the additional losses to
be considered in NB-IoT outdoor-to-indoor propagation.

The paper is organized as follows. The background is
provided in §II, while §III presents experimental design,
measurement campaigns, and data processing. The proposed
models are derived in §IV, while further discussions and
insights are given in §V. Conclusions are provided in §VI.

II. BACKGROUND

This section provides the background of this investigation.
After a short discussion of NB-IoT technology (§II-A), PL
modeling solutions commonly adopted for cellular systems are
described in §II-B. Literature examples showing how NB-IoT
PL modeling are presented in §II-C.

A. NB-IoT technology

NB-IoT is a LPWAN radio interface that leverages the cellu-
lar licensed spectrum and architecture [2]–[4]. It operates over
either a 200 kHz Global System for Mobile Communications
(GSM)-like channel or an LTE Physical Resource Block (PRB)
of 180 kHz. It adopts one out of three possible operation
modes: a) stand-alone, over a 200 kHz channel in the GSM
spectrum, b) in-band, over a single PRB within a set of LTE
PRBs, c) guard-band, within a guard band among different
sets of LTE PRBs.

After selecting a mode, a mobile operator can provide NB-
IoT services via a software upgrade of its infrastructure, i.e.,
by configuring (some of) its LTE evolved Node Bs (eNBs)
with NB-IoT-enabled cells.

In Rel-13, NB-IoT allocates downlink (DL) and uplink
(UL) resources using Frequency Division Duplex (FDD), with
Time Division Duplex (TDD) introduced in Rel-15. Moreover,
Orthogonal Frequency Division Multiple Access (OFDMA)
is applied in DL (15 kHz subcarrier spacing), while Single

Carrier Frequency Division Multiple Access (SC-FDMA) is
used in UL (subcarrier spacing of either 15 kHz or 3.75 kHz).

The definition of DL and UL channels nearly follows LTE,
with some simplifications [2]. For this paper, it is worth know-
ing that, similarly to LTE, NB-IoT cells allocate portions of
DL channels to the transmission of the Narrowband Reference
Signal (NRS). This allows NB-IoT devices to estimate their
propagation conditions in terms of (Narrowband) Reference
Signal Received Power (RSRP [dBm]). Based on RSRP and
operator’s configurations, a device estimates its Coverage
Level (CL), which in turn allows to optimize the configurations
for performing the Random Access (RA) procedure (i.e., the
attachment to a cell) and to exchange data. Depending on the
CL, NB-IoT transmissions can be repeated up to 2048 vs.
128 times in DL vs. UL, in order to increase the probability
of correct reception in harsh environments (e.g., dense urban
and deep indoor). Since NB-IoT targets high service reliability
and delay-tolerant data exchange, repetitions are preferred
to advanced coding schemes; furthermore, only low order
modulation schemes, Quadrature Phase Shift Keying (QPSK)
and Binary Phase Shift Keying (BPSK)/QPSK, are adopted in
DL/UL.

Finally, in order to ensure high energy efficiency and long
battery lifetime, NB-IoT standards introduce two energy sav-
ing schemes: the extended Discontinuous Reception (eDRX)
and the Power Saving Mode (PSM) [37].

B. PL modeling in cellular systems

We now provide a high-level description of PL modeling
solutions commonly used in cellular systems, with particular
attention to aspects relevant to NB-IoT, for both outdoor and
outdoor-to-indoor propagation.
Outdoor propagation. It is a common practice to represent
the PL [dB] on a wireless outdoor link as follows:

PL = PL + X [dB], (1)

where PL is the average PL and X represents a random
variation around the average, that is usually assumed to be
caused by slow fading, i.e., shadowing due to obstructing
objects.1

Different empirical models have been proposed for estimat-
ing PL in cellular systems. All are somehow derived from
the Free Space (FS) model, which characterizes ideal Line of
Sight (LoS) propagation [6].2 In the FS model, PL is given
by:

PLFS = 20 log10(d) + 20 log10(fc) + 20 log10

(4π

c

)
, (2)

where d is the Transmitter-Receiver (Tx-Rx) distance (e.g.,
cell-device distance in a cellular system), fc is the carrier
frequency, and c is the speed of light. Assuming d in km
and fc in MHz, the last term is equal to 32.44 dB.

1The effects of fast (also, small scale) fading, mostly due to multipath
and mobility, are usually neglected in general PL characterizations, so to
remove specific propagation behaviours and local variability [6] [12]. In
§III-D, we report the processing steps for removing fast fading from our
NB-IoT measurements, while preserving the shadowing component.

2The well-known Friis’s formula extends FS by considering possible
antenna gains at both Transmitter and Receiver sides.
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ABG [30] and CI [31] models are widely used, and have
also been recently adopted for modeling urban and suburban
5G PL (see [10] [11] [30], among others).

The ABG model estimates PL as follows:

PLABG = 10γ log10(dkm) + 10β log10(fc,MHz) + l0, (3)

where dkm is the Tx-Rx distance [km], γ is a distance-
dependent parameter, i.e., the PL exponent, fc,MHz is the
carrier frequency [MHz], β is a frequency-related exponent,
and l0 is a constant loss term [dB]. Eq. (3) shows that
ABG generalizes the FS model. The name ABG refers to an
alternative notation used in literature (see [10] [11], among
others), by which variables α, β, and γ indicate the PL
exponent, constant losses, and fc-related parameters. In this
paper we use instead a more traditional symbolic reference so
to have a uniform notation with the CI model.

Similarly, the CI model estimates PL as follows:

PLCI = 10γ log10

(dkm
d0

)
+ A. (4)

In Eq. (4), d0 is a reference distance to be defined, while A
is either set as the loss at d0 estimated via FS, or optimized
along with γ in a fitting procedure.

As shown in Eq. (1), the estimated PL is complemented by
a sample extracted from a random variable X , modeling the
presence of fading. When shadowing prevails, X is commonly
assumed to be normally distributed with zero mean (µ) and
standard deviation (σ) determined by fitting the PL equation
to the available measurements.

In mobile scenarios, an accurate shadowing model should
also include its correlation with distance, that is, given a cell,
how shadowing experienced at similar distances, in a given
cell, is correlated. Gudmundson [32] showed that shadowing
autocorrelation can be approximated via a decreasing exponen-
tial function over distance, where the decreasing rate depends
on environmental factors. Based on [32], 3GPP suggested
the following approximation for shadowing autocorrelation in
mobile cellular networks [38]:

R(∆d) = e
−|∆d|
dcor , (5)

where R(∆d) represents the shadowing autocorrelation at ∆d,
and ∆d is the relative distance between two locations. dcor is
the so-called decorrelation distance, defined as the distance at
which the empirical autocorrelation drops at a value equal to
e−1. The problem of how to select dcor is addressed in §IV-C2.
Outdoor-to-Indoor propagation. A practical and quite com-
mon solution for modeling this scenario is to add a further term
to PL, in order to account for the loss experienced by the signal
when penetrating walls, floors, and other obstructing objects,
before reaching destination. This additional loss, li [dB], can
be obtained empirically, by observing the extent by which,
in average, PL outdoor estimates deviate from real indoor
measurements. In Technical Specification (TS) 38.901 [39],
3GPP proposed a distance-based definition for li, by which
li = 0.5di,m, where di,m denotes the indoor component of the
cell-device path in meters, from the outer wall to the device.

C. Existing PL models used for NB-IoT

In NB-IoT simulation-based works, several options have
been adopted for PL estimation, as summarized in Table I.
All investigations reuse models obtained from measurements
on other cellular technologies, e.g., UMTS and LTE. As clear
from Eqs. (6)-(12) (top next page), such models were defined
as extensions of the ABG and CI models, typically embedding
cell antenna heights.

TABLE I: Application of PL models to NB-IoT PL estimation.

PL Formula Literature
Examples Fading Indoor Loss

li [dB]

Eqs.
(6)(7)

[16] Shadowing
N (0, 10)

20, 30

[17]–[20] Flat
Rayleigh 20

[21] Shadowing
N (0, 8)

N/A

[22] N/A N/A

[23] Flat
Rayleigh 10

Eqs.
(8)

[24] N/A N/A

[25] Shadowing
N (0, 9.4)

10

Eqs.
(10)(11)

[26] [27] Shadowing
N (0, 6)

10, 20, 30

NB-IoT literature has often relied on the PL model of 3GPP
UMTS 30.03 [40], originally proposed for vehicular scenarios
in urban and suburban areas, with buildings of nearly uniform
height. In this case, PL follows Eq. (6), where hb,m is the cell
antenna height [m].

In 3GPP Technical Report (TR) 45.820 [41], Eq. (6) is
rewritten assuming an average cell antenna height of 15 m
(i.e., hb,m = 15 m) and fc,MHz = 900 MHz [42], i.e. the
carrier frequency of LTE Band 8, also available for NB-IoT
deployment [2] [43]. The resulting equation, shown in Eq.
(7), has been largely used in NB-IoT simulations (see [16]–
[23], among others). A simple recalculation allows its use at
fc,MHz = 800 MHz, i.e. the carrier frequency of LTE Band 20,
also available for NB-IoT and corresponding to the frequency
range adopted by the operators in our measurement campaign
(cf. §III).

Other investigations use the Okumura-Hata (OH) model
[24] [25]. OH is a traditional model for cellular propagation,
valid at frequencies from 150 to 1500 MHz [6]. For urban
environments, the model is based on measurements collected
in the city of Tokyo, and PL follows Eq. (8). The term
COH depends on the considered urban scenario; for small-to-
medium cities, COH is reported in Eq. (9), where hm,m denotes
the height of the mobile device, usually fixed to a reference
value of 1.5 m.

Another option, used for example in [26] [27], is the adop-
tion of 3GPP models for Urban Macrocell (UMa) propagation
[38], that estimate PL for LoS and Non LoS (NLoS) separately,
as reported in Eqs. (10) and (11). In this case, the cell-device
distance is in meters and the carrier frequency is in GHz.
Moreover, UMa LoS requires the evaluation of a break point
distance via Eq. (12), which defines the distance where the LoS
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PLUMTS = 40(1− 4 · 10−3hb,m) log10(dkm)− 18 log10(hb,m) + 21 log10(fc,MHz) + 80 (6)

⇓

PLTR45.820 = 37.6 log10(dkm) + 120.9 (7)

PLOH = [(44.9− 6.55 log10(hb,m)] log10(dkm)− 13.82 log10(hb,m) + 26.16 log10(fc,MHz) + 69.55− COH (8)

COH = [1.1 log10(fc,MHz)− 0.7]hm,m − [1.56 log10(fc,MHz)− 0.8] (for small-to-medium cities) (9)

PLUMa,LoS =

{
22 log10(dm) + 20 log10(fc,GHz) + 28 10 < dm < d′BP

40 log10(dm) + 2 log10(fc,GHz) + 7.8− 18 log10(h′b,m)− 18 log10(h′m,m) d′BP < dm < 5000
(10)

PLUMa,NLoS = 161.04− 7.1 log10(Wm) + 7.1 log10(hm)−
[
24.37− 3.7

( hm
hb,m

)2]
log10(hb,m)

+ [43.42− 3.1 log10(hb,m)][log10(dm)− 3] + 20 log10(fc,GHz)− [3.2(log10(11.75hm,m))2 − 4.97] (11)

d′BP = 4h′b,mh
′
m,m

fc,GHz

c
, h′b,m = hb,m − 1, h′m,m = hm,m − 1 (12)

propagation assumes a slightly different behavior. Effective
antenna and mobile heights are also used, obtained via simple
adjustments of the original values, as reported in Eq. (12). For
UMa NLoS, two further parameters are needed: street width
Wm and building height hm, in meters. The applicability range
for the parameters is given in [38].

As regards the shadowing term, 3GPP also gives indications
on the σ value to adopt, i.e., 10 dB for UMTS 30.03 [40], 8
dB for TR 45.820 [41], and 4/6 dB for UMa LoS/NLoS [38].
These values are also adopted in NB-IoT simulations (Table
I). Observe that some of the works opted for considering fast
fading via flat Rayleigh distributions.

For outdoor-to-indoor propagation, a majority of works
adopt li values between 10 dB and 30 dB [41]. These losses
represent different indoor conditions, up to deep indoor, that
are likely to arise for several NB-IoT use cases (e.g., smart
metering). Recent investigations [44]–[46] show that the 3GPP
distance-based model for li fits fairly well NB-IoT measure-
ments above the ground level, while performs poorly below the
ground level. Applying this rule is challenging, as it requires
precise knowledge of di,m and complicates PL estimation.

III. EXPERIMENTAL DESIGN AND DATA PROCESSING

This section contains our measurement campaign, and pro-
vides a description of the adopted measurement system and
setup in §III-A, and an overview of the dataset in §III-B. Fi-
nally, we show how PL measurements were extracted (§III-C),
and data prepared for the subsequent analyses (§III-D).

A. Measurement system

We executed NB-IoT measurements in Oslo using the Ro-
hde&Schwarz (R&S) TSMA6 toolkit, along with an Exelonix
device, and a Global Positioning System (GPS) antenna.

R&S TSMA6 is formed by a spectrum scanner and a laptop,
where the controlling software, named ROMES4, is installed.
It enables passive measurements of 3GPP radio technologies

up to 6 GHz, and supports NB-IoT signal decoding in all
the operation modes. We also leveraged two further TSMA6
functionalities, i.e., a) Automatic Channel Detection, for de-
tecting the technologies in the specified spectrum, and b) Base
Transceiver Station (BTS) Position Estimation, for estimating
the position of the cells.

The Exelonix module is a Qualcomm-based NB-IoT device.
We embedded the device with NB-IoT SIM cards of the
operators under testing, and connected it to TSMA6 via USB.
By doing so, we were able to configure and monitor several
device operations, such as cell (re-)selection, CL estimation,
and RA, while keeping track of Quality of Service (QoS) of
active measurements executed after successful RAs.

The present work exploits passive measurements collected
by TSMA6; hence, we do not provide further details on
Exelonix device and measurements, for which we refer the
interested reader to [47] [48].

B. Measurement campaign and dataset

The measurement campaign covered a period of three weeks
in Summer 2019. We enabled the scanner to perform passive
measurements on several LTE bands. By doing so, we detected
two LTE operators, denoted Op1 and Op2, which also provide
NB-IoT in the guard bands of Band 20.

The collection was split into multiple sub-campaigns (sim-
ply referred to as campaigns in the following), each charac-
terized by different location and time. We conducted several
outdoor campaigns while walking or on public transport.
We also collected static measurements in indoor and deep
indoor environments. The dataset includes morning, afternoon,
evening, weekdays, and weekends campaigns.

We performed 22 outdoor campaigns, forming the main
data-source for this paper. Due to repeated measurements,
some of these campaigns covered the same areas. The same
applies to indoor and deep indoor campaigns, containing
repeated measurements in a set of unique positions.
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Each campaign contains parallel collection of both NB-
IoT and LTE coverage measurements, as well as network
deployment data for Op1 and Op2. In [29], we provide the list
of collected attributes along with the full dataset. Moreover, we
also make available a geo-referenced visualization platform for
a visual assessment of outdoor measurements and estimated
position of Op1 and Op2 eNBs and cells.

In this paper we focus on the RSRP readings from all
the cells detected during our campaigns (along with position
for cells and measurement points), since this enables the
calculation of the experimental PL, used for fitting NB-IoT-
specific ABG and CI models.

C. PL derivation from measurements

The evaluation of PL based on NRS from cells is estimated
as follows:

PL = PNRS
tx − RSRP, (13)

where PNRS
tx [dBm] is the power used to transmit NRS.

The decoding of control messages from the cells via
TSMA6 allows to retrieve PNRS

tx .3 For both operators, we
observe that cells may use slightly different PNRS

tx values (in
the range of a few dB). Most of cells adopt a value of 29
dBm. Hence, we fix PNRS

tx = 29 dBm for all cells.
In Eq. (13), we assume negligible antenna gains at both

device and cell sides. At the device side, this directly follows
TMSA6 configurations; at the cell side, we came to this
conclusion by observing two experimental facts:
• Differently from LTE, which commonly employs several

sectorial cells per eNB, both operators in Oslo have
activated a single NB-IoT cell in the majority of their
LTE-native eNBs [28], ultimately suggesting that they
provide nearly omnidirectional coverage around each
cell/eNB for NB-IoT;

• A limited amount of PL readings is already available in
the R&S system. Such readings refer to the serving cells
only, i.e., the cells toward which the Exelonix device
has performed RAs [47]. The dataset provided in [48]
includes these measurements. Hence, we tested the PL
calculation in Eq. (13) against such readings. As shown
in Fig. 1, we observe that PL readings nearly follow Eq.
(13), ultimately supporting our hypothesis. The observed
deviations can be attributed to fading, measurement
noise, and different rate and possible mismatch between
TSMA6 scanner (which collects RSRP) and Exelonix
device (that collects PL of serving cells) acquisitions.

D. Data processing

We execute throughout the paper per cell and operator-
agnostic analyses (apart for §V-A, where we report a compari-
son between operators). Hence, for each cell in each campaign,
the position information provided by BTS Position Estimation
and GPS are used to evaluate the distance between cell and
measurement points, via the haversine formula [49]. The PL

3This parameter is named nrs_Power_r13 and is shared along with other
parameters in the so-called System Information Block 2 (SIB2) messages.
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Fig. 1: A comparison of PL readings available in the R&S system
vs. PL evaluation in Eq. (13). PL readings are only available for cells
toward which the NB-IoT device has performed RAs. Eq. (13) allows
to extend the pool of cells under study, including the ones for which
the scanner has information on PNRS

tx and RSRP.

at each distance point is obtained by applying Eq. (13) with
the corresponding RSRP value and PNRS

tx = 29 dBm.
Since outdoor measurements have been collected under

medium-to-high mobility, a filtering is needed in order to
remove fast fading. To do so, we follow the so-called 40λ-rule
proposed in [50], i.e., we apply a moving average window to
the set of PL measurements for each cell. After filtering, each
PL value is the average of measurements in a range of ±20λ
(i.e., ≈ 37.5 cm @ 800 MHz) from its location.

In order to account for positioning errors due to BTS
Position Estimation and GPS inaccuracies (in the range of
tens of meters), we fix a distance d0 = 0.05 km and discard,
for each cell, all the measurements with d < d0. This value is
also used as CI reference distance.

In each campaign, a large number of cells is usually
detected. Some of the cells may be represented by a low
number of data points, which does not allow for accurate PL
characterizations, particularly when such points are at large
distances from cells, due to model unreliability. In order to
consider this effect, while preserving a large enough amount
of cells and treating each campaign equally, we select the 30
top cells for each campaign, i.e., the 30 cells having the largest
number of data points. Then, we discard from this pool the
cells having the nearest data point at a distance greater than 1
km. This results in a rather symmetric distribution of discarded
cells across campaigns, with a median of 5 cells discarded.
The campaigns covering smaller (larger) areas (i.e., walking
and driving campaigns) have a lower (higher) number of cells
discarded. The extreme cases are of 2 and 16 discarded cells
for a walking and a driving campaign.

Finally, we observe that, being in urban scenarios, it is likely
that the campaigns include both LoS and NLoS measurement
points. A classification per point is rather difficult due to the
large number of cells and measurements. Hence, we follow
the approach in [12], adopted in several empirical models,
and analyze the measurements without separating LoS/NLoS
points. Indeed, as discussed in §IV, we aim at providing
models for mixed LoS/NLoS urban situations, which is key
for NB-IoT simulations.

IV. ABG AND CI MODELS FOR NB-IOT

In this section, we present the steps leading to the NB-
IoT PL models proposed in this paper. After assessing the
accuracy of existing models (§IV-A), we characterize the main
terms of Eq. (1). Hence, we first fit ABG and CI equations
for PL estimation (§IV-B), and then focus on the shadowing
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term (§IV-C). For the latter, we also discuss the autocorrelation
with respect to Eq. (5). A summary of obtained results is given
in §IV-D, where we also highlight the main use cases of the
proposed models.

A. Comparison of existing models

First, we analyze how the models currently used in NB-
IoT simulations perform in terms of PL estimation accuracy
against the values in our outdoor campaigns in Oslo. Besides
the models in Eqs. (6)–(11), we also report, here and in the
next sections, the performance obtained by the FS model, in
order to quantify the deviations between ideal and observed
propagation characteristics, and better highlight how such
deviations are handled by existing and newly proposed models.

Given each campaign, we use the existing models for
estimating PL for each cell and corresponding distances. Then,
we evaluate the Root Mean Square Error (RMSE) on the
differences between PL measurements and PL estimates.

As expressed in Eqs.(6)–(11), some of the models require
environment configurations, such as, hb,m, hm,m, hm, and Wm.
Our campaigns are in the wild, i.e., on operational networks.
Hence, retrieving information on the above values (e.g., the
height of each detected cell) is rather challenging. Under this
uncertainty, a widespread option is to simulate PL propagation
by using reasonable average values for the above parameters.
Hence, cell height hb,m was fixed to 15 m, the mobile device
height (hm,m) to 1.5 m and, for UMA NLoS, the building
height and street width (hm and Wm) to 25 m and 12 m,
respectively.
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Fig. 2: Comparison of existing PL models adopted in NB-IoT
literature. For each model, RMSE statistics across cells are reported.

Fig. 2 shows the statistics of RMSE for each model across
cells. All models have rather high RMSE values, that highlight
poor PL estimation accuracy. This is due to several reasons,
including the fact that the values adopted in such models are
not fitted on NB-IoT measurements, and hence they fail to
accurately represent propagation behaviour. Furthermore, the
need for fixing the environmental variables might also nega-
tively affect the accuracy of some of the models. However, as
anticipated above, this is a common procedure in simulation-
based studies, where the assumption of perfect knowledge of
such configurations is rarely met.

Note that TR 45.820 minimizes the median RMSE to about
10 dB, thus proving to be a reasonable option in absence of

a NB-IoT specific model. OH and UMa LoS slightly increase
the RMSE compared to TR 45.820, while UMa NLoS and FS
bring the median RMSE up to 20 dB, showing that they may
significantly overestimate (or underestimate for FS) PL, due
to the assumption of full NLoS (or ideal for FS) propagation,
which is likely not representative of urban scenarios where
mixed LoS/NLoS situations naturally arise.

B. PL characterization

In this section, we characterize NB-IoT PL for both ABG
and CI models. Throughout §IV-B1 and §IV-B2, we analyze
the propagation characteristics across multiple cells in order
to a) obtain statistically extended models, i.e., distributions
from which some of the model parameters can be selected,
while b) keeping the models simple, by fixing some of the
other parameters.

1) Unconstrained fitting: We now derive NB-IoT specific
parameters for ABG and CI models, i.e., values and distribu-
tions of γ, β, and l0 for ABG, and γ and A for CI. In this
phase, we execute dedicated least squares procedures for each
cell, by adopting unconstrained fitting, i.e., no constraints on
the search spaces of the parameters were used.

Fig. 3 reports the results of the least squares procedure on
a reference cell.
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Fig. 3: An example of unconstrained fitting results on a reference
cell. ABG and CI estimates are compared against real measurements.
FS and TR 45.820 estimates are reported for comparison.

We observe that ABG and CI tend to converge to similar
estimate for PL and both follow the measurement trend, apart
for expected deviations due to shadowing. For comparison,
Fig. 3 also includes FS and TR 45.820 models, and shows
that both models lead to an underestimation of PL compared
to real measurements. For this cell, the fitting leads to the
parameters of Table II. Both models have the same value for
γ; then, the value for A in CI groups the contributions from
β and l0 in ABG.

TABLE II: Values of ABG and CI parameters obtained with
unconstrained fitting on a reference cell.

Model γ β l0 or A
ABG 2.56 2.97 35.27

CI 2.56 – 88.30

Note that the two models tend to converge to similar
parameters for a large number of cells, ultimately suggesting
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that a two-parameters model, such as CI, may be accurate
enough for estimating PL. The variance of values of γ is,
however, high across cells, confirming that, as discussed in
§I, cells deployed in an urban area result in significantly
different propagation behaviours, due to the heterogeneity of
the surrounding environment. In addition, the corresponding
distributions do not converge to well-known shapes. An analy-
sis of both models was carried out, aiming at a better simplicity
vs. accuracy tradeoff, by focusing on the values of l0 and A.
Fig. 4 reports the empirical probability density function (PDF)
for fitted l0 and A values across cells.
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Fig. 4: Empirical PDFs and averages for fitted values of l0 (left) and
A (right), obtained across cells with unconstrained fitting.

We observe that both distributions are nearly symmetric,
and values close to the averages occur frequently. This is
particularly evident for ABG (left chart of Fig. 4), where the
average l0 value is 32.36 dB. Note that the average value is
very close to the value of l0 in the FS model (32.44 dB, see
§II-B), as also obtained in [12].

As for CI, the fitted values of A (right chart of Fig. 4) also
concentrate around the average value (81.31 dB). However,
this latter significantly diverges from the loss estimated by
applying FS at d0, that is the value at which A should be
fixed when not obtained from fitting (cf. §II-B). In our case,
this value would correspond to about 64.48 dB, given fc = 800
MHz and d0 = 0.05 km.

In order to simplify the models and stabilize the fitting,
we fix l0 to the FS term (32.44 dB) for ABG, and A to the
value derived empirically for CI (81.31 dB) [12]. In the next
section, we show the impact of fixing such terms on model
accuracy, and also quantify the effect of fixing A to the value
suggested by FS (64.48 dB).

2) Constrained fitting: The least squares procedure was
applied to both models, after fixing l0 and A values, and
the values obtained for the other parameters across cells were
analyzed. Fig. 5 (top next page) shows the PDF of the values
obtained for γ and β for ABG with l0 = 32.44 dB (Figs.
5a and 5b), and for γ for CI with A = 81.31 dB (Fig. 5c).
Differently from the unconstrained case, the parameters seem
to follow normal distributions. The normality was verified
at 5% significance level via the Lilliefors test [51]. Fig. 5
also reports the means and standard deviations of the normal
distributions better representing the measurements. The values

for γ are normally distributed also for CI with A = 64.48 dB
(not in Fig. 5 for space limitations).

Focusing on the distributions for γ, observe that the averages
are about 2.4 (CI) and 2.8 (ABG), which are reasonable values
compared to previous studies on urban propagation @ 800-900
MHz (e.g., [52] for LoRaWAN).

Note that distributions also include negative values. Previous
investigations also report negative or near-zero γ values in
urban scenarios. In particular, in [8] [9] it is observed this
range of values could be obtained a) when measurement points
span over too short distance ranges, and b) because buildings
may shadow the cell signal at short distances, with this effect
reducing with increasing distance, when buildings may tend
to disappear from the cell-device path. Our case shows that
negative values also appear in the unconstrained fitting case
and are thus not caused by the choice of fixing some of the
parameters. Moreover, no significant difference between path
lengths leading to negative vs. positive γ values is observed. In
conclusion, this result intrinsically shows the complex nature
of urban propagation, where several environmental features
(e.g., multiple high buildings) may lead to conditions that
depart from nominal propagation characteristics.

The proposed models embed the above realistic propagation
patterns, leading to rather high variability in the considered
scenarios. Hence, when applied to simulation-based studies,
we suggest to perform a reasonable amount of repeated tests,
so to consider a sufficient number of scenarios and provide
reliable average performance.

As a further analysis, we quantify a) the accuracy loss of
fixing l0 and A in ABG and CI, compared to the unconstrained
cases, and b) the accuracy gain of ABG and CI (with fixed
terms) compared to PL models adopted in NB-IoT literature.
In order to do so, we define GRMSE as the RMSE loss
(resp. gain) obtained by adopting one model vs. another.
Given a model, we evaluate RMSE for each cell; then, we
average across cells, obtaining RMSE. Finally, considering two
models, we evaluate the ratio of their RMSE values, which
in turn defines GRMSE. By definition, GRMSE > 1 represents
an accuracy loss in adopting the model at the numerator of
GRMSE and, conversely, an accuracy gain for the model at the
denominator of GRMSE, since it indicates a lower RMSE for
the latter.

First, we study GRMSE as the ratio between ABG and CI
with fixed l0 and A (at the numerator) and corresponding ABG
and CI with unconstrained fitting (at the denominator). As re-
gards ABG, we obtain GRMSE = 1, meaning that fixing l0 does
not cause any accuracy loss compared to the unconstrained
case. This is explained by observing that constrained fitting
achieves in all cases the same minima of the unconstrained
counterpart, thanks to the possibility of adjusting γ and β
values when l0 is fixed. For CI, we obtain instead GRMSE ≈ 1.5
with A = 81.31 dB, and GRMSE ≈ 1.9 with A = 64.48 dB.
Hence, oppositely to ABG, CI is negatively affected by fixing
A, since this leads to local minima during the fitting procedure
and, in turn, accuracy losses. A = 64.48 dB results in the
highest loss and, therefore, it is not investigated further.

Fig. 6 shows GRMSE as the ratio between existing models
(at the numerator) and ABG and CI with fixed l0 and A (at
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Fig. 5: Empirical PDFs for fitted values of γ and β (left and middle) for ABG, and γ for CI (right), obtained across cells with constrained
fitting. The nearest normal approximations and corresponding parameters are also reported.
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Fig. 6: Proposed vs. existing models: GRMSE represents the gain in
terms of RMSE (across cells) of using ABG and CI models with
fixed l0 and A compared to existing models.

the denominator). We observe significant gains of both fitted
models with respect to existing ones. Since ABG provides
higher gains compared to CI, we suggest this model as
the primary modeling option; however, in the next sections,
we still report results obtained by CI, since this provides a
reasonable modeling option and a good benchmark for ABG.

C. X characterization

After analyzing PL, we provide insights on the error
obtained by comparing PL measurements and PL estimates.
This quantifies the accuracy of PL models, and provides
insights on shadowing distribution (§IV-C1) and correlation
over distance (§IV-C2).

1) Distribution: As explained in §II-B, models with good
accuracy result in zero-mean normally distributed shadowing
(in dB), that is, X ∼ N (µ = 0, σ), where µ is the distribution
mean and σ is the standard deviation.

In both unconstrained and constrained fitting cases, the
differences between ABG and CI estimates and measurements
nearly follow normal distributions for most of the cells, in
particular when these are represented by a large enough
number of measurements.

Table III reports the values of µ and σ of the normal
distribution better approximating the empirical X for the cell
taken as reference in previous sections.

As expected, ABG and CI converge to a same zero-mean
normal distribution. As a comparison, the results obtained for
FS and TR 45.820 show that, due to PL underestimation, the

TABLE III: Values of µ and σ for the nearest normal distribution
approximating X . Values are evaluated for ABG and CI with uncon-
strained fitting on a reference cell. FS and TR 45.820 approximations
are reported for comparison.

Model µ σ

ABG ≈ 0 4.04
CI ≈ 0 4.04

TR 45.820 @800 MHz 8.76 4.93
FS 28 4.25

convergence to a zero-mean distribution is not achieved. Note
that existing models may also overestimate PL. For example,
considering the same cell, we report a negative value of µ for
OH (µ = −0.91) and UMa NLoS (µ = −15.54).

In order to analyze this aspect further, we report in Fig. 7
(top next page) the empirical distribution of the means of the
normal distributions better approximating X across cells. For
both ABG and CI, we see how typical values for µ approach
zero. The deviation from zero increases for CI, due to the fact
that it leads to slight accuracy decreases. We also see that TR
45.820 roughly preserves a zero average, but the deviations
are quite significant, with values for µ spanning in a range
exceeding ±20 dB. This suggests that such a model alterna-
tively underestimates and overestimates PL, providing quite
unstable estimates compared to real measurements. Finally,
FS constantly underestimates PL, resulting in a high average
value of µ (about 19 dB). Overall, the analysis leads to the
conclusion that fitted ABG and CI provide zero-mean normally
distributed shadowing, contrarily to other models.

We now observe how σ values distribute across cells.
Fig. 8 (top next page) shows that for both ABG (Fig.

8a) and CI (Fig. 8b), σ follows left-skewed distributions. By
means of the Akaike Information Criterion (AIC), we find that
Generalized Extreme Value (GEV), Nakagami, and Weibull
distributions can approximate well the measured values, since
they minimize AIC compared to other distributions. Figs.
8a and 8b report GEV, Nakagami, and Weibull distributions
better approximating the empirical PDFs for both models.
We report in Table IV the parameters for GEV and Weibull
approximation. Due to practicality, we suggest Weibull as the
approximation for σ in both models.

The obtained result differs from [12], which suggested
a normal distribution for σ (PL is estimated via CI with
fixed A). The difference might depend on several factors,
i.e., different technologies (traditional cellular vs. NB-IoT),
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Fig. 8: Empirical PDFs for fitted values of σ for ABG (left) and CI (right), obtained across cells with constrained fitting. The nearest GEV,
Nakagami, and Weibull approximations are also reported.

TABLE IV: Parameters for GEV and Weibull distributions better
approximating the empirical distribution of σ values. We suggest
Weibull approximation (bolded) due to simplicity.

Model GEV Weibull
Location Shape Scale Shape Scale

ABG 3.337 −0.102 1.717 2.218 4.709
CI 4.684 −0.041 2.240 2.289 6.670

frequencies (1.9 GHz vs. 800 MHz), and scenarios (suburban
vs. urban). A Weibull approximation leads to the following
while simulating shadowing in a multi-cell urban scenario,
the models allow for a zero-mean normal approximation, with
σ of different cells extracted from a Weibull distribution.

2) Autocorrelation: After discussing the distribution, we
characterize NB-IoT shadowing correlation and embed this
aspect in the proposed models, also for better representing
propagation in mobile conditions.

First, we take the shadowing terms over distance and
evaluate dcor for each cell, as defined in Eq. (5). Fig. 9 (top
next page) depicts the empirical distribution of dcor values
for ABG (Fig. 9a) and CI (Fig. 9b). Similarly to σ, dcor also
follows left-skewed distributions; by means of the AIC, we
find that Gamma and Weibull distributions can approximate
well the empirical PDFs, as also shown in Fig. 9. The distri-
bution parameters are reported in Table V. Aiming at model
simplicity, we suggest the adoption of Weibull approximation.

TABLE V: Parameters for Gamma and Weibull distributions better
approximating the empirical distribution for the values of dcor [m].
We suggest Weibull approximation (bolded) due to simplicity.

Model Gamma Weibull
Shape Scale Shape Scale

ABG 1.234 10.92 1.134 14.11
CI 1.339 19.97 1.197 28.45

For both models, dcor typical values are rather low (i.e., less
than 10-20 m in most cases), suggesting that, as the distance to
a cell surpasses dcor, the shadowing correlation tends to vanish
and be negligible, as modeled by the 3GPP approximation in
Eq. (5). We exemplify this observation for a reference cell in
Fig. 10, that shows the shadowing autocorrelation as a function
of distance, with shadowing terms resulting from the adoption
of ABG and CI models to our measurements.

For this cell, dcor is about 10 vs. 20 m for ABG vs. CI.
Therefore, we embed such values in Eq. (5) and also report
the corresponding approximations in Fig. 10.

The exponential function proposed by 3GPP is quite accu-
rate in approximating shadowing autocorrelation up to dcor.
Then, at larger distances, the empirical trends tend to deviate
from the approximation in a random manner. Indeed, the
observed rises and falls are due to random situations not
accounted for in the model. Since this behaviour is observed
across cells, we conclude that, on average, NB-IoT shadowing
correlation indeed vanishes over distance. Therefore, it can be
safely modeled by Eq. (5), using dcor values sampled from the
distributions of Fig. 9.
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Fig. 9: Empirical PDFs for the values of dcor [m] for ABG (left) and CI (right), obtained across cells with constrained fitting. The nearest
Gamma and Weibull approximations are also reported.
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Fig. 10: An example of shadowing autocorrelation on a reference
cell. The empirical autocorrelation for ABG and CI models (with
constrained fitting) is compared against corresponding 3GPP approx-
imations after the evaluation of dcor (Eq. (5)).

D. Model Summary and Usage

Table VI summarizes the main results derived in §IV. We
assume the use of ABG or CI models for simulating NB-
IoT propagation from multiple cells deployed in an urban
area similar to the city of Oslo, i.e., a medium size outdoor
environment with buildings of different heights and mostly
wide streets. For PL, the models have fixed values for l0 and
A terms. Then, they allow to associate different parameters to
each cell, in terms of γ and β (ABG), and γ (CI). Such values
are extracted from normal distributions.

The shadowing term is zero-mean normally distributed with
cell-dependent standard deviation σ. For both models, the val-
ues for σ are extracted from Weibull distributions. Assuming
a simplistic modeling, the shadowing terms at each distance
from a cell can be independently generated; for more realistic
modeling, also including mobility scenarios, their correlation
over distance should be modeled via Eq. (5), with the value of
dcor for each cell extracted from a Weibull distribution.4 The
parameters for all the distributions are reported in Table VI.

V. MODEL EVALUATION AND FURTHER DISCUSSIONS

In this section, we perform further analyses, in order to
evaluate the proposed models. First, we perform a comparison

4See [40, Annex D, §4] for further details on how to use the shadowing
autocorrelation function in PL models.

TABLE VI: Summary of proposed ABG and CI parametrization for
NB-IoT PL modeling in urban scenarios.

Parameter ABG [Eq. (3)] CI [Eq. (4)]
γ N (2.78, 3.17) N (2.36, 1.15)
β N (2.81, 0.60) –

l0 or A [dB] 32.44 81.31
X N (0, σ) N (0, σ)

σ [dB] Wbl(4.709, 2.218) (a) Wbl(6.670, 2.289)
Shadowing autocorr. Eq. (5)

dcor [m] Wbl(14.11, 1.134) Wbl(28.45, 1.197)
(a) Wbl(x, y) stands for Weibull distribution with scale x and shape y.

between NB-IoT operators in §V-A, thus assessing the differ-
ences between them and how the proposed operator-agnostic
models can be used for estimating corresponding PL. Then, we
propose a technology comparison with LTE (§V-B), and show
that NB-IoT and LTE present significant differences in their
propagation characteristics, even though working at the same
frequencies and exploiting similar infrastructure, ultimately
justifying the adoption of a dedicated PL model for NB-IoT. In
terms of shadowing, we discuss inter-site correlation in §V-C,
while in §V-D we analyze NB-IoT indoor measurements,
providing initial insights for using the models in outdoor-to-
indoor scenarios.

A. Comparison across operators

We analyze how the operator-agnostic PL models map over
operator-specific PL characteristics and infrastructures.

We perform unconstrained and constrained fitting after split-
ting the cells across Op1 and Op2. As a result of unconstrained
fitting, we observe that, for both operators, the distributions
of l0 and A are still symmetric. Op1 has an average value of
32.01 dB for l0 and 79.38 dB for A, while the values for Op2
are 33.12 dB and 82.95 dB. Compared to operator-agnostic
approximation, we see small deviations that justify the use for
both operators of the average values obtained in the previous
section. We also notice that Op1 has smaller losses compared
to Op2, which could be an effect of its denser and better
deployment, including a larger number of better located NB-
IoT cells compared to Op2 [28].

We thus fix again l0 to 32.44 dB and A to 81.31 dB, and
perform constrained fitting across the operators’ cells. Figure
11 shows the normal distributions better approximating the
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Fig. 11: Comparison between NB-IoT operators in terms of distribution of the values of γ and β (left and middle) for ABG, and γ for CI
(right), across cells with constrained fitting. The nearest normal approximations and corresponding parameters are reported for both operators,
and the global normal approximation is shown for comparison.

empirical PDFs obtained for γ (ABG and CI) and β (ABG).
We show normal approximations since, also in this case, most
of the distributions pass the normality test. As shown in Fig.
11, operator-specific slightly deviate from operator-agnostic
distributions. Indeed, the latter are essentially the averages of
the former, apart for numerical approximations due to outliers’
removal, which we perform on all the distributions in order
to rule out the inaccuracies of some collected measurements.
Overall, the results verify that the proposed models provide re-
liable estimates across different operators and infrastructures.

B. Comparison with LTE

We perform a comparison with LTE in order to further
highlight the need for a NB-IoT specific PL model.

As mentioned in §III-B, our campaigns include parallel
NB-IoT and LTE coverage measurements. We have already
assessed in [28] that NB-IoT deployment choices for Op1
and Op2 are a substantial reuse of their LTE infrastructures.
Moreover, in most cases, the operators exploit multiple LTE
sectorial cells per eNB and at different frequencies while,
at the time of our measurements, a single NB-IoT cell per
eNB was mostly used in the guard bands of LTE Band 20.
Therefore, the dataset allows a comparison of NB-IoT and
LTE propagation in a large urban area. For LTE, we focus on
Band 20 and perform the same analyses carried out for NB-
IoT. Due to sectorial deployment, an antenna gain is added in
Eq. (13). We use a common value adopted in LTE link budget
analyses, i.e., 17 dBi [38].

First, we report that LTE results in a significantly lower
number of measurement points, i.e., measurement locations,
per cell, with a median value decreasing from 200 for NB-IoT
to less than 100. This finding already highlights that NB-IoT
propagation is intrinsically different than LTE. Most likely due
to the fact that the transmitted power is focused on a smaller
band, NB-IoT signals are more penetrating than LTE ones, and
thus require specific analyses for better PL characterization.

Figure 12 shows how l0 and A values distribute when
unconstrained fitting is performed for LTE cells. Similarly to
NB-IoT, the values distribute symmetrically, but have signif-
icantly higher averages, i.e., about 46 dB and 110 dB for
l0 and A, respectively. Essentially, this confirms that, in the
same environment and exploiting the same infrastructure, LTE
experiences higher losses compared to NB-IoT.

Once fixed l0 and A to the average values, we execute
constrained fitting and find that γ and β nearly follow normal
distributions also for LTE, although the normality hypothesis
is rejected by the Lilliefors test, probably due to instability
caused by smaller datasets. LTE has an average γ of 2.33
(ABG) and 1.78 (CI), and an average β of 3.14. Higher
variances are also observed compared to NB-IoT in all cases.
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Fig. 12: Empirical PDFs and averages for fitted values of l0 (left)
and A (right), obtained across LTE cells with unconstrained fitting.

C. Inter-site correlation

As a further analysis related to shadowing, we study inter-
site (shadowing) correlation. We observe that this aspect is
usually not embedded in PL models; hence, we also do not
aim at this for the proposed models. However, its investigation
allows to shed light on the complexities of urban propagation,
and is beneficial for network planning and optimization, e.g.,
for deriving solutions for improving coverage and co-channel
interference management.

Inter-site correlation has been studied and demonstrated
in several works addressing PL analysis via measurements
from multiple cells [7], [8], [33]–[36]. In our analysis, we
follow the approach of previous works and study this aspect
by considering three main factors, i.e., given a pair of cells,
a) the distance between each cell and the set of measurement
locations common to both, b) the distance between cells, and
c) the angle between cells. Then, the inter-site correlation is
evaluated on the shadowing terms measured in the common
measurement locations.

Given a pair of cells, the distance between each cell and
the set of common measurement locations is approximated to
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Fig. 13: Distance (left), angle (middle left), and inter-site shadowing correlation (ABG: middle right, CI: right) between pairs of cells, as a
function of the distance between each cell and the set of common measurement locations. Heatmaps show median values for each indicator,
evaluated across the pairs of cells in any bin.

the distance between each cell and the middle location of such
common set. The middle location is identified by alternatively
ordering the full set of common locations with respect to
the distance from one cell or the other. Since many different
distances can be actually observed, we simplify the analysis
by quantizing this indicator, i.e., by grouping distances in bins.
As shown in Fig. 13, we use eleven bins. The distance to a cell,
dcell [m], belongs to bin x = 1 if 0 < dcell ≤ 100 m (i.e., the
cell is less than 100 m away from the set of measurements),
while it belongs to bin x = 11 if dcell > 1000 m (i.e., the cell
is more than 1 km away from the set of measurements). dcell
belongs to bin x ∈ [2, 10] if (x − 1) ∗ 100 < dcell ≤ x ∗ 100
m.

In Fig. 13, the first two heatmaps show distance and
angle between cells as a function of dcell. These would help
to interpret the next two heatmaps, that show the inter-site
correlation for ABG and CI, respectively. Given a joint bin
in each heatmap (e.g., bin 1-1, that shows situations where,
given a pair of cells and their common measurement locations,
dcell ≤ 100 m for both cells), the heatmaps show the median
values of the other variables, evaluated over all the pairs of
cells belonging to that bin.

The heatmaps show a peculiar behaviour at the diagonal.
We observe that when the distances between the cells and
the common measurements are equivalent (i.e., we are on the
diagonal), distances and angles between cells are minimized.
This suggests that, in our campaigns, we often observe sit-
uations where two cells are near each other, and they are
jointly detected in a common set of measurement points. In
such situations, we see from the last two heatmaps that the
inter-site correlation is maximized, even when the collected
measurements are far away from both cells (e.g., bin 10-10 or
bin 11-11). This confirms previous results in [33]–[35], which
demonstrated the inverse relationship between angle and inter-
site correlation between two cells. Outside the diagonal, the
pattern is more confused, and does not allow to highlight a
general behaviour.

Overall, results show the presence of inter-site shadowing
correlation for NB-IoT, with near cells significantly correlated
even at large distances. As anticipated above, this insight can
be an important guideline toward the optimization of NB-IoT
deployments on top of existing cellular infrastructures, and it
could be considered in the definition of schemes for efficient
(de-)activation of NB-IoT cells in specific eNBs.

D. Indoor and deep indoor additional losses

We now complement the above analyses on PL outdoor
modeling, and provide initial insights on the additional losses
due to indoor device placement. In particular, we leverage our
indoor campaigns and split them in three scenarios:

• Indoor @ Deep level (DI), including campaigns where
the device was placed in indoor locations below the street
level, i.e., in office buildings with no windows;

• Indoor @ Low level (InL), including campaigns where
the device was placed in indoor locations at street level,
i.e., in office buildings with windows;

• Indoor @ High level (InH), including campaigns where
the device was placed in indoor locations from 1st to 5th

floor, i.e., in office or residential buildings with windows.

For each scenario, we evaluate the deviation between PL,
as estimated by outdoor models, and real PL values. The
deviation indicates the loss to be added to outdoor estimates
when DI, InL, and InH deployments are considered. For the
outdoor models, we use average values for γ and β; the
indoor measurements are static collections, that thus contain
limited fading variations. Given a location, we average all the
measurements from a cell and provide a unique PL value.
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Fig. 14: Difference between PL outdoor estimates given by ABG
(red line) and CI (green dashed line) models and indoor measure-
ments, as a function of distance for several cells (InL: magenta dots,
InH: blue crosses, DI: black stars).

Figure 14 shows how DI, InL, and InH measurements dis-
tribute over distance. For comparison, we report PL estimates
over the same set of distances, for both models. Note that the
figure reports measurements from different cells. As observed
throughout the paper, multiple cells are usually detected in the
same location, leading to different distance points in Fig. 14.
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Fig. 15: Statistics and average value of the difference between PL outdoor estimates given by ABG and CI models and InL (left), InH
(middle), and DI (right) measurements.

We observe that InL and InH measurements slightly increase
the PL compared to outdoor estimates. A few measurements
points result even overestimated by the models. A significant
PL underestimation is instead observed for DI, which empha-
sizes the strong impact on signal attenuation.

We quantify these findings in Fig. 15, where the deviations
between outdoor estimates and indoor measurements are re-
ported in boxplots, as a function of the adopted model and
for the three indoor scenarios. As regards InL (left), we see
that such a deployment results in an average additional loss of
about 8 dB and 11 dB for ABG and CI estimates, respectively.
The average loss increases to about 13 dB and 16 dB for
InH situations (middle). The difference between InL and InH
could be due to a stronger impact of ground reflections in the
former case that could result in constructive interference and
thus higher received signal power. Moving on DI (right), we
see a significant PL increase, resulting in average values of
about 49 dB and 52 dB for ABG and CI, respectively.

Compared to the values adopted in NB-IoT simulation-
based studies (10 dB, 20 dB, and 30 dB, see §II), we see
that the first two values roughly approximate the empirical
observations in InL and InH. However, at a first glance, the
value of 30 dB seems to significantly underestimate DI losses.

On this aspect, we underline two experimental limitations
which we plan to overcome in the next-future via further
measurement campaigns: a) the set of indoor locations we
tested is rather limited, and b) for DI, we have collected
data for two extreme enclosed locations (i.e., two floors
under the ground level, with iron doors and no windows).
Hence, our empirical findings are, in their current status, not
generalizable and cannot be validated statistically. Still, we
believe they provide an effective guideline for the application
of the proposed ABG and CI models in simulating NB-IoT
indoor deployments, while highlighting the need for more
extensive investigations.

VI. CONCLUSION

In this paper, we present the first empirical characterization
of NB-IoT PL in an urban scenario. By exploiting a large
scale measurement campaign in Oslo, we provide statistically
extended ABG and CI models for PL average term, along
with shadowing distribution and correlation over distance.
Moreover, we analyze inter-site shadowing correlation and
give numerical indications on the additional losses to con-
sider when using the models for simulating outdoor-to-indoor

propagation. The models enable realistic simulations of NB-
IoT propagation in Oslo-like multi-cell urban deployments,
improving the PL estimation accuracy given by existing mod-
els adopted in NB-IoT works, which are not derived from NB-
IoT measurements. Future work will include the collection and
analysis of further measurements, in both outdoor scenarios
(i.e., other cities and suburban areas) and indoor locations,
aiming at model validation and extension.
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