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NB-IoT Random Access:
Data-driven Analysis and ML-based Enhancements

Giuseppe Caso, Konstantinos Kousias, Özgü Alay, Anna Brunstrom and Marco Neri

Abstract—In the context of massive Machine Type Commu-
nications (mMTC), the Narrowband Internet of Things (NB-
IoT) technology is envisioned to efficiently and reliably deal with
massive device connectivity. Hence, it relies on a tailored Random
Access (RA) procedure, for which theoretical and empirical
analyses are needed for a better understanding and further
improvements. This paper presents the first data-driven analysis
of NB-IoT RA, exploiting a large scale measurement campaign.
We show how the RA procedure and performance are affected
by network deployment, radio coverage, and operators’ con-
figurations, thus complementing simulation-based investigations,
mostly focused on massive connectivity aspects. Comparison with
the performance requirements reveals the need for procedure
enhancements. Hence, we propose a Machine Learning (ML)
approach, and show that RA outcomes are predictable with good
accuracy by observing radio conditions. We embed the outcome
prediction in a RA enhanced scheme, and show that optimized
configurations enable a power consumption reduction of at least
50%. We also make our dataset available for further exploration,
toward the discovery of new insights and research perspectives.

Index Terms—Cellular Internet of Things, massive Machine
Type Communications, Narrowband Internet of Things, Random
Access, Empirical Analysis

I. INTRODUCTION

Since its introduction by 3rd Generation Partnership Project
(3GPP) in Release 13 (Rel-13), the Narrowband Internet of
Things (NB-IoT) technology is gaining momentum as a lead-
ing solution in the context of Low Power Wide Area Networks
(LPWANs) [1]. Along with other technologies, NB-IoT en-
ables IoT services for massive Machine Type Communications
(mMTC), including smart city and industrial automation use
cases, by exploiting the existing cellular architecture in a low
cost and power efficient manner [2]–[6].

In order to cope with the massive access requirement, the
NB-IoT design has emphasized the importance of providing
reliable connectivity, hence proposing a tailored Random
Access (RA) procedure. Even though NB-IoT RA takes its
root from Long Term Evolution (LTE) RA, there still exists
several peculiarities and further challenges, not only in terms
of increased access requests, but also with respect to the
environmental scenarios in which many NB-IoT devices are
supposed to operate (e.g., deep indoor). For this reason, the
research community is increasingly formalizing and analyzing
several NB-IoT RA-related aspects. In particular, initial inves-
tigations have led to the definition of theoretical performance
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models, often validated by simulations, which emphasize the
massive connectivity aspect [7]–[20] (see §VI for details).

In parallel, many mobile operators are launching NB-IoT
networks worldwide [21], making possible to execute field
trials and measurement campaigns. These enable a better
understanding of the system, including the RA procedure,
toward identifying correlations between deployment and per-
formance, and in turn deriving new guidelines for further
system enhancements. To this end, data-driven analyses are
crucial to understand the complexities of modern communi-
cation systems; however, extensive measurement campaigns
are scarcely available to researchers, who thus often opt for
sub-optimal simulation-based approaches.

Given the above motivations, we provide in this paper the
first data-driven analysis and enhancement of NB-IoT RA.
To do so, we exploit a large scale measurement campaign
conducted in the city of Oslo during 2019, which includes
measurements from two mobile operators and corresponding
network deployments. To the best of our knowledge, this is the
first analysis on NB-IoT operational networks to specifically
consider RA procedure and performance across heterogeneous
scenarios. The main contributions of this paper are:

• We conduct a thorough analysis on NB-IoT RA, revealing
how its performance and outcomes depend on network
deployment, radio coverage, and specific configurations
adopted by the operators. The results in this paper
complement RA studies in the current literature, which
mainly emphasize the multiple access aspect and adopt
simulation-based analyses;

• We propose a Machine Learning (ML) approach to en-
hance the RA procedure, demonstrating that a reliable
prediction of its outcomes is possible, and can be used
to optimize the operations composing the procedure. Our
results show that, with the proposed approach, the RA
power consumption can be reduced by at least 50%;

• We open-source our dataset [22], which comprises of
NB-IoT RA measurements for two Norwegian operators,
collected across heterogeneous environmental scenarios.
Along with the dataset in [23], which focuses on network
deployment and coverage [24], we thus make available a
large amount of NB-IoT data for further exploration by
the research community.

The rest of the paper is organized as follows. A back-
ground on NB-IoT is provided in §II, in terms of technology
overview (§II-A) and RA description (§II-B). §III presents
the experimental design, executed measurement campaign, and
collected dataset. RA performance analysis is reported in §IV,
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in which we first study preliminary affecting factors (§IV-A),
and then present and discuss RA results (§IV-B). ML-based
analysis and enhancement are introduced and discussed in
§V. We report related literature in §VI, contrasting with our
contributions. We finally conclude the paper in §VII.

II. BACKGROUND

A. NB-IoT Technology

NB-IoT is a radio interface implemented over the cellu-
lar licensed spectrum that leverages the existing architecture
[2]. In the following we report the most important features
standardized in Rel-13, complemented by the enhancements
introduced in Rel-14 and Rel-15 [3] [25].

NB-IoT operates over either a 200 kHz Global System for
Mobile Communications (GSM)-like channel or an LTE Phys-
ical Resource Block (PRB) of 180 kHz, allowing coexistence
with both technologies. It can adopt three operation modes:
• stand-alone over a 200 kHz channel in GSM spectrum;
• in-band over a single PRB within a set of LTE PRBs;
• guard-band over a PRB within a guard band among

different sets of LTE PRBs.
After selecting a mode, the operators can provide NB-IoT
services via a software upgrade of their infrastructure, i.e.,
reconfiguring their LTE evolved Node Bs (eNBs) and cells.

Downlink (DL) and Uplink (UL) resources are accessed in
Frequency Division Duplex (FDD), but also in Time Division
Duplex (TDD) since Rel-15. Orthogonal Frequency Division
Multiple Access (OFDMA) is applied in DL, with 15 kHz
subcarrier spacing and Cyclic Prefix (CP). The PRB is divided
into seven OFDM symbols of twelve subcarriers each, and
occupies in time a slot of 0.5 ms. Two slots sum up into
a subframe, which is the smallest DL scheduling unit. DL
channels and signals include:
• Primary and Secondary Synchronization Signals (NPSS1

and NSSS), which allow device/cell synchronization;
• Physical Broadcast Channel (NPBCH), which carries

Master Information Blocks (MIBs), broadcasting high-
level network configurations;

• Physical Downlink Control Channel (NPDCCH), which
carries Downlink Control Information (DCI) messages;

• Physical Downlink Shared Channel (NPDSCH), which
is used to transmit data and further configurations via
System Information Blocks (denoted SIBx, where x
identifies a SIB transmitting specific configurations, e.g.,
SIB2 provides RA-related settings, see §II-B).

Cell-dependent portions of NPBCH, NPDCCH, and NPDSCH
are used to transmit the Reference Signal (NRS), which allows
to estimate propagation conditions.

Single Carrier Frequency Division Multiple Access (SC-
FDMA) is instead applied in UL. The subcarrier spacing can
be either 15 kHz or 3.75 kHz, in which case the PRB contains
48 subcarriers and lasts 2 ms. UL channels include:
• Physical Random Access Channel (NPRACH), which

allows to initiate the connection toward a cell, i.e., the
RA procedure (§II-B);

1N stands for Narrowband in all acronyms.

• Physical Uplink Shared Channel (NPUSCH), which car-
ries data and control information.

In UL, sub-PRB allocation is possible, i.e., less than twelve
subcarriers can be allocated. In particular, single-tone (single-
subcarrier) transmissions are enabled in both spacing modes,
while 12, 6, and 3 multi-tone transmissions are available for
15 kHz spacing. NPRACH is always 3.75 kHz-spaced and
single-toned, while NPUSCH configurations depend on radio
conditions and operators’ settings.

NB-IoT targets high service reliability and delay-tolerant
data exchange mostly in UL. For this reason, advanced
modulation and coding are not supported. Rather, Quadrature
Phase Shift Keying (QPSK) and Binary Phase Shift Keying
(BPSK)/QPSK modulations are adopted on each DL/UL sub-
carrier, respectively; then, so-called Coverage Enhancement
(CE) techniques are used to improve connectivity in harsh
environments. On the one hand, a power boost is obtained by
narrowing down the signal bandwidth, at the cost of a low data
rate. On the other hand, NB-IoT uses repeated transmissions to
increase the probability of correct reception. In particular, DL
and UL messages can be repeated up to 2048 and 128 times,
respectively. As described in §II-B1, the device estimates a so-
called Coverage Level (CL) during RA, considering its radio
conditions and operator’s configurations, and the number of
repetitions depends on the CL.

NB-IoT devices operate in idle or connected modes. While
in idle, they trigger the procedures for switching into con-
nected, including cell (re-)selection, RA, and DL paging mon-
itoring. While in connected, they exchange data and continue
the monitoring. Finally, aiming at high energy efficiency
and long battery lifetime, two energy saving schemes have
been introduced, that is, extended Discontinuous Reception
(eDRX) and Power Saving Mode (PSM), for which detailed
descriptions and analyses are given in [26].

B. NB-IoT Random Access

NB-IoT RA is described in this section, along with the
preliminary operations affecting its execution and outcomes.

1) Preliminary operations: Among pre-RA operations, cell
(re-)selection and CL estimation play a key role, and are thus
described in the following.

a) Cell (re-)selection: Cell selection enables a device to
identify, synchronize to, and determine the suitability of a cell.
Once the device has decoded the cell identity, it determines
its suitability using two SIB1 parameters, that is, minimum
required signal strength (Qrx,min) and quality (Qqual,min) [27].
A cell n is considered suitable iff :{

Srx,n := RSRPn −Qrx,min > 0

Squal,n := RSRQn −Qqual,min > 0
(1)

where Srx,n and Squal,n are signal strength and quality indica-
tors obtained by observing Reference Signal Received Power
(RSRP [dBm]) and Quality (RSRQ [dB]) for cell n, i.e.,
RSRPn and RSRQn in Eq. (1), respectively.

If multiple surrounding cells are suitable, the device selects
the strongest in terms of RSRP.
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Fig. 1: Block diagram representing NB-IoT RA procedure. Dashed blocks depict pre-RA operations, i.e., cell (re-)selection and CL estimation.

Cell re-selection supports connection mobility during the
idle mode. If the device has selected cell n, it uses two SIB3
parameters, SIntraSearchP and SNonIntraSearch, to decide if a re-
selection is needed in the same frequency band (Intra) and/or
in different bands (NonIntra). Re-selection is triggered in both
Intra/NonIntra modes iff :{

Srx,n ≤ SIntraSearchP

Srx,n ≤ SNonIntraSearch

(2)

where Srx,n follows Eq. (1).
In this case, the device monitors several cells; then, it

decides to camp on a new cell n′ if it is suitable2, and:

RSRPn′ −Qoff > RSRPn −Qhyst, (3)

where Qhyst is an hysteresis value preventing ping-pong re-
selections and shared in SIB3, while Qoff is an offset param-
eter, specifically applied to NonIntra re-selections and shared
in SIB5. In Intra mode, the condition in Eq. (3) should hold
for a time interval at least equal to tresel, shared in SIB3. The
tresel value for NonIntra mode is instead shared in SIB5.

Aiming at energy savings, stationary devices with high
RSRP from the selected cell could avoid re-selections. Rel-14
makes also possible to avoid re-selections throughout a day, if
the device observes limited RSRP variation in its current cell.
Rel-15 further allows RSRP evaluation on NSSS and NPBCH
signals, thus reducing the time for obtaining RSRP values.

b) CL estimation: Once a cell is selected, the device
estimates its CL by observing the RSRP, and comparing it
with operator-specific thresholds [28]. The standard allows
up to two RSRP thresholds, leading to three possible CLs:
CL0 represents LTE-like radio conditions, while CL1 and CL2

apply to challenging scenarios, e.g., deep indoor. Assuming
two thresholds Th1 and Th2 in dB (Th1, Th2 > 0, and
Th1 > Th2), the device estimates its CL as follows:

CLx =


CL0 if RSRP ≥ −140 + Th1

CL1 if − 140 + Th2 < RSRP < −140 + Th1

CL2 if RSRP ≤ −140 + Th2

(4)

where −140 dBm is the receiver sensitivity [28] [29].

2Suitability check during re-selection follows Eq. (1), but may adopt
different parameters shared in SIB3 [27].

2) RA procedure: The RA procedure is depicted in Fig. 1.
Once a cell is selected and a CL estimated, the device transmits
a preamble (Msg1) on NPRACH during the first available
RA Opportunity (RAO). As clarified later, Msg1 is transmit-
ted with CL-dependent configurations, and preambles from
multiple devices may collide in this phase. If the cell detects
Msg1 of a device, it replies with a Random Access Response
(RAR, or Msg2) on NPDSCH. With RAR, the device gets
the UL grant for transmitting Msg3 on PUSCH, containing a
device identifier (C-RNTI).3 With Msg4, the cell resolves any
contention due to preamble collision, transmitting a connection
setup command with the C-RNTI of the contention-winning
device. The winning device infers the RA success and replies
with Msg5, finalizing its transition into connected mode and
proceeding with data exchange. Adopting a backoff scheme,
the other devices try to access after waiting for a backoff time,
randomly selected in a window between zero and a maximum
configurable value. Then, they transmit a new attempt in the
next available RAO. Aiming at better handling overloading
situations, the access barring scheme can be also adopted,
where the cell broadcasts an access barring factor that may
depend on network conditions. The devices start a new RA
if they randomly extract a value lower than this factor. Both
schemes are detailed in [31].

We conclude the overview by noticing that the RA proce-
dure is clearly needed in idle mode but, if required, it can
be also executed by already connected devices, in order to
improve connection reliability while reducing the data rate [2].

Next we further detail some important aspects related to RA,
i.e., NPRACH channel, CL adjustment, and power control.

a) NPRACH: As anticipated in the RA description,
NPRACH is the time-frequency resource on which the pream-
ble is transmitted. While LTE PRACH is multi-toned, with
1.25 kHz subcarrier spacing and 1.05 MHz bandwidth [32],
NPRACH is single-toned, with 3.75 kHz subcarrier spacing
and access regulated by Frequency Hopping (FH) [7]. A
cell can configure up to 48 NPRACH subcarriers, meaning
that there are up to 48 available preambles with unique FH
patterns. The devices access NPRACH in multi-channel slotted
ALOHA; hence, they may select the same preamble and
collide. The preamble consists of four symbol groups, each

3Rel-15 Early Data Transmission (EDT) also allows to transmit (small
amount of) data encapsulated in Msg3 [30].
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TABLE I: NB-IoT RA-related terminology adopted in this paper, in alphabetical order.

Term / Acronym Description
CLx Coverage Level x, with x ∈ [0, 2] (CL estimation follows Eq. (4))

C-RNTI Cell Radio Network Temporary Identifier, it identifies the RA contention-winning device

∆ramp Power ramping parameter for successive preamble attempts in CL0 (shared in SIB2)

MIB / SIB Downlink periodic messages carrying network configurations

Msg1–Msg5 Downlink and Uplink messages composing a RA execution

Natt Total number of possible preamble attempts in a RA execution (shared in SIB2)

NCLx
att Total number of possible preamble attempts in a RA execution using CLx configurations (shared in SIB2)

NCLx
rep Total number of repetitions of a preamble attempt using CLx configurations (shared in SIB2)

NPDSCH Downlink channel used for Random Access Response (RAR, or Msg2) transmission

NPRACH Uplink channel used for preamble (Msg1) transmission.

NPUSCH Uplink channel used for request-to-connect (Msg3) transmission

NRS NB-IoT Reference Signal

Pmax
tx Maximum device transmission power (20 or 23 dBm for Rel-13, also 14 dBm for Rel-14)

P
NPRACH/NPUSCH
tg Target received power on NPRACH and NPUSCH (used in Eqs. (5) and (7), shared in SIB2)

PNPRACH
tx Power used to transmit a preamble attempt on NPRACH (defined in Eq. (5))

PNPUSCH
tx Power used to transmit Msg3 and data on NPUSCH (defined in Eq. (7))

Qhyst, tresel (Intra mode) Parameters used for Intra cell re-selection (used in Eq. (3), shared in SIB3)

Qoff , tresel (NonIntra mode) Parameters used for NonIntra cell re-selection (used in Eq. (3), shared in SIB5)

RAO Random Access Opportunitiy (each time NPRACH resources are available, it depends on NPRACH periodicity)

RSRP, RSRQ Received Signal Strength Power and Received Signal Strength Quality (their evaluation is standardized by 3GPP)

SIntraSearchP, SNonIntraSearch Parameters used to trigger cell re-selection (used in Eq. (2), shared in SIB3)

Srx, Squal, Qqual,min, Qrx,min Parameters used to check cell suitability (used in Eq. (1), Qqual,min and Qrx,min are shared in SIB1)

SINR Signal to Interference plus Noise Ratio (its evaluation is vendor-specific, not standardized by 3GPP)

Th1, Th2 Threshold used for CL estimate in Eq. (4)

containing one CP and five symbols. The CP lasts either 66.7
µs or 266.67 µs. Each symbol has a duration of 266.67 µs, and
the subcarrier for the first symbol group is randomly chosen
from the set of subcarriers allocated to the CL the device is
in. The next three symbol groups are transmitted using the
FH pattern [7]. NPRACH periodicity (i.e., RAO period) also
depends on the CL, reaching up to 2560 ms.

b) CL adjustment and Power control: The CL indicates
the resources to use in NPRACH, and the number of repe-
titions to adopt for transmitting each preamble attempt. The
amount of repetitions to use in a CL (NCLx

rep ) is given in SIB2,
along with RSRP thresholds for CL estimation and further
RA configurations. These include the maximum number of
preamble attempts within an entire procedure (Natt) and
the number of preamble attempts for each CL (NCLx

att , with
NCLx

att ≤ Natt). The device can adjust its initial CL estimate
if it is not being able to access after NCLx

att attempts. It thus
moves into higher CLs, performing other attempts with a
higher number of repetitions, until it is able to connect or
reaches Natt. In CL0, the device also adopts the following
power control to derive the transmission power for the first
attempt, denoted PNPRACH

tx [dBm]:

PNPRACH
tx = min{Pmax

tx , PNPRACH
tg + PL}, (5)

where Pmax
tx and PNPRACH

tg represent maximum transmission
and NPRACH target powers, respectively. PL [dB] is the
experienced path loss, evaluated as follows:

PL = PNRS
tx − RSRP, (6)

where PNRS
tx is the power used by the cell to transmit NRS.

If needed, PNPRACH
tx can be increased in the next CL0 at-

tempts, adding a power ramping quantity equal to ∆ramp [dB].
PNPRACH

tg , PNRS
tx , and ∆ramp are also signalled in SIB2.

Rel-13 devices do not adopt power control/ramping in CL1

and CL2, and always use Pmax
tx instead, equal to either 20 or 23

dBm. Rel-14 extends power control/ramping to CL1, and also
introduces a new device power class with Pmax

tx = 14 dBm.
A similar power control is used to configure the NPUSCH

power, denoted PNPUSCH
tx [dBm], as follows:

PNPUSCH
tx = min{Pmax

tx , 10 log10(M) + PNPUSCH
tg + αPL + c}, (7)

where M depends on the NPUSCH bandwidth [2, Chapter 7],
0 ≤ α ≤ 1 is used to adjust the path loss contribution, and c
groups other considered variables, as detailed in [33].

We conclude this section by reporting in Table I the most
relevant terminology in the context of NB-IoT RA, selected
from the terms used in §II and next sections.

III. EXPERIMENTAL DESIGN

In this section, we present our measurement campaign,
providing a description of the adopted hardware and software
components, and an overview of the experimental setup and
collected dataset.

A. Measurement System

We performed NB-IoT measurements in the area of Oslo,
Norway, using the Rohde&Schwarz (R&S) TSMA6 toolkit,
along with an Exelonix NarrowBand (NB) USB device and a
Global Positioning System (GPS) antenna.

The TSMA6 system integrates a spectrum scanner and a
laptop, where the controlling software, named ROMES4, is
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installed. The spectrum scanner enables passive measurements
of all 3GPP mobile radio technologies up to 6 GHz, and
supports NB-IoT signal decoding in all operation modes. Be-
sides these functionalities, we leveraged two further TSMA6
features, i.e., a) Automatic Channel Detection, for automati-
cally detecting all technologies in the specified spectrum, and
b) Base Transceiver Station (BTS) Position Estimation, for
estimating the position of cells and eNBs. This setup allowed a
comprehensive collection of measurements related to network
deployment and radio coverage [23] [24].

The Exelonix module is a Qualcomm-based IoT device
supporting NB-IoT and LTE-M. We embedded the device
with NB-IoT SIM cards of the operators under testing, and
connected to TSMA6 via USB. By doing so, we were able
to configure and monitor via ROMES4 the device operations,
including cell (re-)selection, CL estimation, and RA, and keep
track of the Quality of Service (QoS) of active measurements
possibly executed after a successful RA. The connection to
TSMA6 also enabled the observation of radio conditions from
the device perspective, in parallel to the scanner and focusing
on the serving operator/cell pair.

B. Measurement Campaign and Dataset

The measurement campaign covered a period of three weeks
in summer 2019. We enabled the scanner to perform passive
measurements on LTE Band 1, 3, 7, and 20, and corresponding
guard bands. By doing so, we detected two LTE operators,
denoted as Op1 and Op2, which also provide NB-IoT service
in the guard bands of Band 20.

The collection was dissected into multiple sub-campaigns,
each characterized by specific features in terms of location,
time, and device operations. Considering location and time, we
conducted the sub-campaigns in three reference scenarios, i.e.,
Deep Indoor (DI), for basements and deep enclosed spaces,
Indoor (I), for houses and multi-floor buildings, and Outdoor
(O), while walking or on public transport. We also extended
the measurements over time, and hence the dataset includes
morning, afternoon, evening, weekdays, and weekends sub-
campaigns. Considering device operations, we exploited the
possibility to configure the Exelonix module via ATtention
(AT) Commands [34], and created three test cases in ROMES4.
For each operator, we run the test cases in the above scenarios,
in parallel with the scanner measurements. Considering the fo-
cus on RA, we developed a main test case in which the device
performed repeated RA executions spaced out by short waiting
times. In the other two test cases, the device was required to
perform, after a successful RA, either a connectivity test via
Internet Control Message Protocol (ICMP) ping, toward the
Google Domain Name System (DNS) server located at 8.8.8.8,
or a short data upload via File Transfer Protocol (FTP), toward
a proprietary server located in Oslo. By doing so, we were able
to collect a large number of RA executions, thus enabling a
deep inspection of its functioning and performance, reported
in §IV.

Overall, we performed 21, 69, and 24 sub-campaigns in
DI, I, and O scenarios, respectively. Considering the passive
measurements performed by the scanner, each sub-campaign

contains parallel collection of NB-IoT and LTE coverage
measurements, as well as network deployment data for the
operators detected in the monitored bands. We provide in
[23] the list of collected attributes and the complete dataset,
with anonymized operator-specific information. As regards the
active measurements executed through the Exelonix device,
each sub-campaign includes anonymized information related
to a specific operator’s network. The sub-campaigns are almost
equally split across operators, and each of them contains sev-
eral RA-related attributes. These are described in [22], where
we also provide the complete dataset and the configurations
adopted for the test cases.

IV. PERFORMANCE EVALUATION

In this section, we present the analysis of our measurement
campaign. First, we analyze preliminary factors affecting the
RA procedure, including network deployment and coverage,
along with cell (re-)selection and CL estimation. We then
extensively discuss the RA performance.

A. Deployment, Coverage, and Preliminary Operations

In the following, we first analyze NB-IoT network deploy-
ment and radio coverage, by leveraging the spectrum scanner
measurements. We then move on to cell (re-)selection and
CL estimation, hence including the analysis of measurements
obtained via the Exelonix module.

1) Network deployment and Radio coverage: Fig. 2a de-
picts the placement of NB-IoT eNBs for Op1 and Op2 in
the Oslo area covered by our measurements, as provided by
the TSMA6 BTS Position Estimation functionality. We find
that Op1 features a higher number of eNBs compared to
Op2 (146 vs. 107), implying a denser infrastructure; more-
over, both operators use the existing LTE infrastructure for
deploying NB-IoT. On this aspect, considering an average
across operators, about 86% of the eNBs supporting LTE have
been reconfigured, and now include at least one cell each
providing NB-IoT services. For Op1 we detected a few NB-
IoT-only eNBs, that could be explained by considering the
more penetrating nature of NB-IoT signals compared to LTE.

Since the passive measurements by the scanner do not re-
quire any active operation toward cell selection and connection
(which are performed by the Exelonix module), we define the
operator’s coverage in a measurement location as the highest
RSRP and Signal to Interference plus Noise Ratio (SINR)
values perceived among all the cells detected for that operator.
By averaging across all locations in a sub-campaign, we finally
obtain the sub-campaign average coverage.

Figs. 2b and 2c depict the sub-campaign average coverage
for both operators in a boxplot format, in terms of RSRP (a)
and SINR (b), across DI, I, and O scenarios. We find that both
RSRP and SINR are significantly lower in DI environments.
More specifically, when compared to I, the sub-campaign
average RSRPs differ in their averages by 36.36 dB and 35.7
dB for Op1 and Op2, respectively, while the corresponding
numbers are 10 dB and 9.88 dB for SINR. The results
highlight the negative effect of DI on the signal propagation,
which needs to be mitigated via CE techniques. The deviation
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Fig. 2: Spatial deployment of NB-IoT eNBs for Op1 (blue color,
label: 1) and Op2 (red color, label: 2) (a). NB-IoT coverage: sub-
campaign average RSRP [dBm] (b) and SINR [dB] (c), grouped by
scenario and operator.

between O and I is instead smaller, with an average increase of
1.55 dB (Op1) and 5.75 dB (Op2) for RSRP, and an average
decrease of 6.18 dB (Op1) and 0.92 dB (Op2) for SINR. The
SINR decrease highlights that the higher heterogeneity and
dynamicity of the O scenario (e.g., in terms of mobility) has
a direct impact on signal quality rather than signal strength.
Across operators, we find that Op1 consistently provides better
NB-IoT coverage (i.e., about 4.69 dB and 3.62 dB better on
average for RSRP and SINR, respectively), mainly due to its
denser infrastructure.

We further validated the above observations by performing
two non parametric analysis of variance tests, i.e., Kruskal-
Wallis and Dunn’s tests, to assess which of the RSRP/SINR
distributions have statistically different mean values. In par-
ticular, we observed mostly statistically significant difference

TABLE II: Cell (re-)selection parameters for Op1 and Op2.
Acronyms and notations from Table I.

Selection Parameter (SIB1) Op1 Op2
Qrx,min [dBm] −64 −70

Qqual,min [dBm] −23 −23

Re-selection Parameter (SIB3) Op1 Op2
SIntraSearchP [dBm] 31 31

Qrx,min [dBm] −64 −70

tresel [s] 3 6

SNonIntraSearch [dBm] 31 10

Qhyst [dB] 3 4

a) between DI and I/O scenarios (for both operators), and
b) between operators in I and O scenarios. Due to space
limitation, the full set of results is reported in [22].

2) Cell (re)-selection: We report in Table II the parameters
adopted by Op1 and Op2 for cell (re-)selection, retrieved by
decoding SIB1 and SIB3 messages via TSMA6. We observe
that while some parameters set by the operators are similar,
there are also significant differences in some other parameters.
In particular, with regards to cell suitability (Eq. (1)), Op2 uses
a lower value for Qrx,min, meaning that more cells would be
considered suitable for connection. In parallel, Op2 tries to
slow down the re-selection rate by adopting higher values for
tresel and Qhyst (Eq. (3)). We also observe that both operators
share in SIB3 a value for SNonIntraSearch, extremely high for
Op2. However, we did not detect SIB5 messages, which
carry other NonIntra configurations, implying that NonIntra
re-selections are not executed. This is in line with the current
deployment for both operators, which comprises of a single
NB-IoT carrier each in the guard bands of LTE Band 20.

The adopted configurations directly relate to deploy-
ment/coverage aspects previously discussed: given its less
dense deployment and lower coverage, Op2 enables more
(re-)selection opportunities, which may help the devices to
find a cell to camp on. However, this solution may lead to
excessive cell re-selections, which may not be needed and
beneficial for stationary devices, ultimately leading to higher
energy consumption. We highlight this aspect by evaluating the
statistics of the number of serving cells for DI and I stationary
sub-campaigns, as well as for O scenarios. In particular, for
each sub-campaign we evaluate the number of cells toward
which the Exelonix module has performed RA that resulted
in a connection. We find that Op1 has a smaller average value
of serving cells than Op2 in both DI (2.44 vs. 3.59) and I (1.84
vs. 2.29), thus confirming that the Op2 deployment/coverage,
along with the parameter settings shown in Table II, lead to
more cell (re-)selections in stationary scenarios. Due to denser
deployment, Op1 has instead more serving cells in O (45 vs.
28.83 on average), where the higher values as compared to
DI and I are due to the larger measurement area. In this
case, contrarily to the indoor counterpart, the (re-)selections
are inherently needed due to device mobility.

3) CL estimation: We now discuss the CL estimation, as
described in §II-B1b. As an initial step, we report in Table
III the entire set of RA configurations for both operators,
retrieved by decoding SIB2 messages. We focus for now
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TABLE III: RA parameters for Op1 and Op2, as observed in SIB2.
Acronyms and notations from Table I.

Parameter Op1 Op2
Th1, Th2 [dB] 31, 21 36, 26

∆ramp [dB] 2 2

PNPRACH
tg [dBm] −112 −104

Natt 10 10

Parameter (per CL) Op1 Op2
NCLx

att
(a) 4, 4, 2 4, 4, 2

NCLx
rep

(a) 2, 8, 32 2, 8, 32

NPRACH periodicity(b) [ms] 640 640

NPRACH subcarriers(b) 12 12

Response Window Size(a,c) pp10, pp5, pp5 pp5, pp5, pp5

MAC Cont. Resol. Timer(a,c) pp64, pp64, pp64 pp8, pp8, pp8
(a)Values for CL0, CL1, and CL2.
(b)The same value is configured for all CLs.
(c) ppx stands for "x times (N)PDCCH period (pp)".

on the first row of the table, which provides the values
for Th1 and Th2 adopted in Eq. (4), and discuss the other
parameters later. We observe that operators apply different
RSRP thresholds, 5 dB more conservative for Op2, which
is thus more likely to work at higher CLs. As for cell (re-
)selection, we believe that this configuration is related to
the operators’ deployment/coverage, with Op2 having lower
coverage, and thus trying to enhance the connection reliability
by operating at higher CLs, ultimately dealing with increased
energy consumption and congestion due to repetitions.

We analyze the combined effect of deployment, coverage,
and RSRP thresholds in Table IV, which reports, across
different scenarios, the ratio of initiating and concluding a RA
in the same CL (first three columns per operator) or in different
CLs (last three columns per operator). We evaluate the ratio
as the number of RA executed in a specific CL or transition,
divided by the total number of RA executions. We observe that
a generic device operating in Op1 network would likely start
and conclude its RA in CL0, independently on the scenario it
is deployed. While this is almost always true in I, transitions to
higher CLs are observed in about 5% of occasions in the other
scenarios, due to more challenging propagation conditions (DI)
and/or mobility and dynamicity effects (O). Due to its different
configurations, Op2 works predominantly in CL1 in DI, where
it also experiences transitions to CL2 (4%). As regards I and
O, and similarly to Op1, Op2 mostly starts the RA in CL0,
but requires more transitions to higher CLs (10% on average
across scenarios).

As a common trend across operators, we also observe that
outdoor scenarios increase the need for transitions to higher
CLs, even though better RSRP coverage is observed compared
to indoor situations. This result maps with the SINR decrease
shown in Fig. 2c, and suggests that in more heterogeneous
and dynamic scenarios, the current CL estimation and RA pro-
cedures may be sub-optimal, e.g., requiring several attempts
before achieving a successful connection. This observation
motivates a more thorough study of RA, in terms of its
explainability and outcome prediction, which is the focus of
the analysis in §V.

B. RA Configuration and Performance
In the following we analyze the RA performance in terms

of success vs. fail outcomes, and delay in concluding the
procedure. We first highlight how the performance changes
across scenarios, and then discuss power-related aspects, by
analyzing NPRACH and NPUSCH power control (§II-B2b).

1) RA configurations: Before digging into performance
analysis, we finalize the discussion on the RA configurations
reported in Table III. Beside RSRP thresholds, the operators
adopt similar parameters. As an interesting aspect, we ob-
serve that the two operators use different number of attempts
and repetitions across CLs, while NPRACH periodicity and
subcarriers are the same. The latter settings differ from the
assumptions mostly adopted in simulation-based studies (e.g.,
in [9]). We also highlight different values of PNPRACH

tg (8 dB
higher for Op2), having significant implications on NPRACH
power control (cf. §IV-B3). Op1 also allocates larger time
windows waiting for Msg2 (Response Window Size) in CL0,
and for Msg4 (MAC Contention Resolution Timer).

2) Performance across scenarios: There are two main
outcomes of the RA procedure: RA Success and RA Fail, as
described in §II-B1 (see Fig. 1). However, a further outcome
was registered in our measurements, denoted as RA Abort.
This is specifically used by the Qualcomm chipset in the
Exelonix module, to pinpoint device/cell misalignments during
a RA execution. In particular, majority of aborts were verified
when the subcarrier used by the device for transmitting a
preamble attempt was wrongly decoded, ultimately causing
the RA to stop abruptly. In the following analysis, we do not
consider RA Abort, since it is a chipset-specific rather than a
standardized RA outcome.

Focusing on RA successes, we dissect them into four
sub-levels. By doing so, we aim at emphasizing that, from
several operational perspectives including resource allocation
and energy consumption, RA successes obtained after the
transmission of one preamble attempt only (1st Attempt)
are inherently different from successes obtained after either
performing more attempts with power ramping in CL0 (Power
Ramping), or adjusting the initial CL estimate of one or two
CLs (+1 CL, i.e., either CL0 → CL1 or CL1 → CL2, depending
on the initial CL estimate, and +2 CLs, i.e., CL0 → CL2).

Hence, in Table V we evaluate, for each scenario and
operator, the ratio of a given outcome by dividing the number
of RA with that specific result by the total number of exe-
cutions. For the successes, this ratio represents an estimate
of the achievable success probability, which is a RA key
performance indicator (cf. §VI). We observe that the successes
are significantly predominant across all scenarios and for both
operators, thus hinting at in general reasonably good behaviour
of the procedure. Indeed, the success probability constantly is
of at least 99% across scenarios, meeting the requirement of
having at least 99% success probability over ten RA attempts
(note Natt = 10 for both operators) [31]. Op1 shows slightly
better results compared to Op2; for both, the dynamicity of
outdoor scenarios leads to an increase of RA failures.

Overall, we note that the reported results are not likely
affected by massive device connectivity, since the measure-
ment period covers initial system testing phases. Hence, they
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TABLE IV: CL statistics for Op1 and Op2 across scenarios. For each operator, the first three columns represent the ratio of initiating and
concluding a RA procedure in the same CL; the last three columns report the ratio of RA procedures concluded after CL increase.

Scenario
Op1 Op2

CL0 CL1 CL2 CL0 → CL1 CL1 → CL2 CL0 → CL2 CL0 CL1 CL2 CL0 → CL1 CL1 → CL2 CL0 → CL2

DI 0.93 0.02 ≈ 0 0.03 0.02 ≈ 0 0.26 0.69 ≈ 0 0.01 0.03 ≈ 0

I 0.99 0 0 ≈ 0 0 ≈ 0 0.91 0 0 0.08 0 ≈ 0

O 0.95 0 0 0.025 0 0.025 0.885 ≈ 0 0 0.085 0 0.03

TABLE V: RA result statistics for Op1 and Op2.

Scenario
Op1 Op2

RA Success RA Fail RA Success RA Fail
1st Attempt Power Ramping +1 CL +2 CLs 1st Attempt Power Ramping +1 CL +2 CLs

DI 0.81 0.14 0.04 < 0.01 < 0.01 0.77 0.18 0.04 < 0.01 < 0.01

I 0.99 < 0.01 < 0.01 < 0.01 0 0.88 0.03 0.08 < 0.01 < 0.01

O 0.875 0.075 0.025 0.01 0.015 0.805 0.085 0.08 0.015 0.015
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Fig. 3: Statistics of RA duration for Op1 (a) and Op2 (b), across scenarios and RA results. For each scenario, the numerical indication
represents the average value.

provide RA performance bounds to be compared with the per-
formance achievable under massive system usage, for which
we plan measurements and analyses for future work. As also
highlighted in theoretical and simulation-based studies, we
envision that meeting the 99% success probability requirement
would be increasingly challenged by massive connectivity,
thus calling for adjustments in the RA procedure.

Going deeper on the analysis of different types of successes,
Op1 shows 80% of successes after one preamble transmission
in DI, with this value increasing in O and peaking at a value of
99% in I. When the first attempt is not successful, the power
ramping applicable in the next attempts in CL0 (+2 dB for up
to three more attempts, see Table III) is effective to solve the
majority of remaining procedures (about 8% on average across
scenarios). Finally, the need for increasing CLs and working at
maximum power is experienced in 1-4% of cases. Considering
Op2, the success ratio after one attempt is notably decreased,
finding a minimum of 77% and a maximum of 88% in DI
and I scenarios, respectively. The power ramping in successive
attempts still leads to evident benefits, successfully solving
18% of RA procedures in DI, and about 10% across scenarios.
When compared to Op1, Op2 also requires more CL increases
to achieve connectivity, hinting at the need for working at
maximum power, and using more attempts and repetitions.
We find these results to be in line with the discussion in [18],

where it is observed that a large number of repetitions (as for
CL1 and CL2) is needed under bad radio conditions (e.g., SINR
≈ −30 dB), while consecutive (unrepeated) RA attempts (also,
retransmissions) are sufficient for achieving RA successes with
high SINR. In our measurements, we always find SINR >
−30 dB, and see that RA is mostly solved with CL0 attempts,
thus requiring a low usage of many repetitions. However, it is
worth mentioning that, compared to unrepeated and unramped
retransmissions mostly considered in [18], both operators use
2 repetitions for each CL0 attempt, and apply power ramping.

The results in Table V are complemented by Fig. 3, which
reports the statistics of RA duration for Op1 (Fig. 3a) and
Op2 (Fig. 3b), split across scenarios and RA results. This is
a key performance indicator, representing an estimate of the
achievable access delay, often used in RA studies. For both
operators, we observe a duration increase when moving from
RA successes with one attempt to RA failures, due to the
increase of preamble attempts and repetitions. The duration
peaks at the maximum value when RA fails, that happens
by definition only after the maximum amount of attempts
(10 for both operators, see Table III). We also observe that,
given a specific result, the RA duration slightly decreases
moving from I to O, hinting at a slight effect of propagation
conditions. Finally, we highlight that even though presenting
similar patterns, operators significantly differ in terms of
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Fig. 4: NB-IoT power control mechanisms. The effect of NPRACH power control and ramping for both operators and across scenarios is
reported in (a). If needed, both operators switch from CL0 to CL1 during the 5th preamble attempt (see Table III), where they also adopt
PNPRACH

tx = Pmax
tx = 23 dBm; the comparison between NPRACH and NPUSCH power control mechanisms is given in (b)(c) for Op1 and

Op2, respectively. For each boxplot in (b)(c), the numerical indication represents the average value.

absolute values. This result ties back again with the differences
in deployment, coverage, and configurations. Overall, Op2
provides slower access, with a RA duration of above 15
seconds in case of both RA Success after +2 CLs increase
and Fail, while Op1 is under 10 seconds in most of cases.
Such values can be benchmarked by the requirement stated
in [35], i.e., a RA should take no longer than 10 seconds to
be completed. We see that Op1 mostly meets the constraint,
while Op2 has issues when a RA with double CL increase
is needed for achieving a success. As also commented for
the success probability, massive connectivity will increasingly
challenge the achievement of this delay constraint, ultimately
requiring RA enhancements. Indeed, the proposals in this and
other works (§V-§VI) aim at reducing attempts and repetitions
toward faster successful accesses.

3) Power aspects: We now analyze power-related aspects,
considering their importance for NB-IoT energy efficiency. As
an initial step, we report in Table VI the configurations adopted
by the operators for NPRACH and NPUSCH power control.

TABLE VI: NPRACH and NPUSCH power control parameters for
Op1 and Op2, as observed in SIB2. Acronyms and notations from
Table I and Eq. (7).

Parameter Op1 Op2
PNPRACH

tg [dBm] see TABLE I

PNPUSCH
tg [dBm] −105 −67

α 1 0.7

∆
(a)
NPRACH [dB] 4 4

(a)Included in the term c in Eq. (7).

We already observed in §IV-B1 that Op2 adopts a higher
value for PNPRACH

tg , and thus likely uses more power to
transmit preamble attempts. We now observe that Op2 also
uses a higher value for PNPUSCH

tg , which likely leads to higher
power levels to transmit Msg3 and UL data, even though the
adopted α is slightly lower compared to Op1.

These observations are confirmed by the results reported in
Fig. 4. Fig. 4a shows the effect of NPRACH power control and
ramping during the four preamble attempts in CL0, in terms
of average transmitted power across different scenarios. We
observe that both operators mostly work at Pmax

tx in DI, with
Op1 using slightly less power than Op2. In other scenarios,
Op1 clearly exploits its better coverage and less stringent
PNPRACH

tg value, resulting in lower power values compared to
Op2. Figs. 4b-4c report the statistics of the transmitted power

on both NPRACH and NPUSCH, per operator and across
scenarios. We observe that the higher requirements of Op2 on
PNPRACH

tg and PNPUSCH
tg significantly affect the performance,

and lead to higher powers on both channels. In particular,
while the difference between NPRACH and NPUSCH powers
is limited to 6 dB on average for Op1, it increases to around
17 dB for Op2, due to the significant difference between the
target power values.

These results allow to discuss a further aspect toward
the deployment and usage of the new device power class
standardized in Rel-14, which operates with Pmax

tx = 14 dBm.
The introduction of these devices leads to further heterogeneity
and may require the operators to a) rethink their deployment
strategies and configurations, and b) communicate to the end-
users that different devices may deliver significantly different
performance in terms of connectivity and battery lifetime.
Given current deployments and configurations, Figs. 4b-4c
highlight that the new device power class is not suitable in DI
for both operators, as they constantly work above 14 dBm. As
regards the other scenarios, we notice that the new power class
would likely work in the Op1 network, since NPRACH and
NPUSCH powers are below 14 dBm in most of cases; on the
contrary, deployment and configuration choices significantly
hinder the use of the new power class to Op2 customers;
NPUSCH median powers are in fact in the range of 14 dBm,
meaning that the new power class is not usable in about 50%
of cases, ultimately requiring Op2 to reconfigure its system,
e.g., reducing PNPUSCH

tg value.

V. RA EXPLAINABILITY AND IMPROVEMENT

In this section, we deepen our analysis by employing a
ML approach on the collected data. The goal is to reveal the
interdependencies between radio conditions, configurations,
and RA outcomes, aiming at better understanding the RA pro-
cedure, proposing better configurations, and achieving higher
efficiency.

In order to do so, we map each RA outcome to a set of
features, to understand how RA outcomes and features are
correlated to each other, and to which extent the latter can be
exploited to represent and predict the former. In our analysis,
we select as features a set of parameters characterizing both
radio conditions and adopted configurations, measured at the
beginning of each RA execution. The feature set thus com-
prises of RSRP, RSRQ, and SINR values, as well as initial CL
estimate and PNPRACH

tx adopted for the first preamble attempt.
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Fig. 5: Correlation Matrix across features and RA Result for Op1 (a) and Op2 (b). Data from all scenarios (DI, I, and O) are combined
together in order to provide an overall overview.

In the following, the initial CL estimate is simply referred to
as CL, while PNPRACH

tx is simplified as Ptx.

A. Linear Correlation and Feature Selection

As an initial step, we run a linear correlation and feature
selection analysis, showing the results in Fig. 5 and Table
VII, respectively.4 Figure 5 highlights that the three radio
parameters (RSRP, RSRQ, and SINR) present the highest cor-
relation coefficients with the RA outcome, across all features
and for both operators, thus implying their impact on the RA
final result. With respect to CL, we observe low correlation
with the radio parameters for Op1, while high values are
obtained for Op2, and particularly with RSRP. This can be
explained by reminding that the CL feature represents the
initial CL estimate, which is derived from RSRP through Eq.
(4). However, due to coverage and threshold configurations,
the estimate is almost always equal to CL0 for Op1, ultimately
hiding the relationship with RSRP, which is instead clear for
Op2. High correlation with RSRP is always observed for Ptx

which is related to RSRP via Eq. (7).
We then apply two well-known feature selection methods on

the feature set, that is, Recursive Feature Elimination (RFE)
[36] and Lasso regularization (Lasso) [37], both working while
training a linear model between features and RA results.

TABLE VII: Application of RFE and Lasso feature selection
algorithms. The initial feature set is {RSRP, RSRQ, SINR, CL, Ptx}.

Scenario
Op1 Op2

RFE Lasso RFE Lasso
DI RSRP RSRP, RSRQ,

SINR
RSRP, SINR SINR

I RSRP, SINR SINR RSRP, SINR SINR

O RSRQ, SINR SINR RSRQ, SINR RSRQ, SINR

Table VII reports the results of the application of RFE
and Lasso to our feature set, split by operator and scenario,
while training a linear model for the RA Result variable.
We observe that both methods highlight the importance of
SINR as a feature for predicting the RA outcome. Lasso
is in general more selective than RFE, and often leads to

4For this analysis, we represent the RA outcomes in a numerical form, with
the four types of successes ordered as in Table V and numbered from 1 to 4,
while RA Fail is indicated with 5.

selecting SINR as sufficient predictor. We also observe that, in
stationary scenarios, RSRP is selected more often than RSRQ
as predictor along with SINR, while the opposite happens
under mobility. The result implies that, in more dynamic
situations, the use of parameters of signal quality rather than
signal strength may lead to performance improvement of the
RA procedure, as they show stronger relationship with its
outcomes. As regards CL and Ptx, they are never selected by
RFE or Lasso, being both strongly correlated with the radio
parameters. From this analysis we can finally conclude that the
radio parameters have a direct impact on RA results, while CL
and Ptx potentially bring limited RA explainability gains.

B. RA Outcome Classification

We then move a step further, casting our RA explainability
problem as a classification problem, also considering the
discrete nature of the RA Result variable. Our analysis aims at
understanding if it would be possible to correctly classify RA
outcomes based on the feature observation. From an opera-
tional perspective, this would be significantly beneficial, since
it provides a methodology for improving the RA efficiency.

To better clarify this aspect, we define in Table VIII an
action set that could exploit the RA outcome prediction and
improve the procedure. As shown in the table, the prediction
of a success after one preamble attempt suggests to rely on
the standard procedure, as this already provides the optimal
outcome. However, assuming that the prediction is a success
after either power ramping or increase of +1 or +2 CLs, then
an efficient action would be to send the initial attempt with
a higher power with respect to the one derived from Eq. (5)
(e.g., already adding the needed ∆ramp), or directly exploit the
configurations of higher CLs. This would in turn avoid the
transmission of attempts that are predicted to be unsuccessful.

Similar observations can be done for RA Fail prediction: in
this case, it would probably make sense to try the connection
only using the most reliable configuration possible (i.e., CL2

settings), even though this outcome hints that even more
drastic adjustments may be needed, e.g., enable the use of
more repetitions beyond the limits configured for CL2.

Holding these observations, we initially run a comparison
across possible classifiers, in order to highlight possible gains
in using one with respect to another. Recognizing that our
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TABLE VIII: Possible action set derived from the adoption of the RA outcome prediction scheme, and corresponding effect on the
standardized procedure. Reported parameters are defined in Table I; PNPRACH

tx evaluation follows Eq. (5).

Predicted RA Result Action Effect

1st Attempt Follow standard procedure –

Power Ramping
at ith attempt
(i ∈ [1, NCL0

att − 1])

Transmit initial attempt with these configurations:{
Nrep = NCL0

rep

PNPRACH
tx,opt = min{PNPRACH

tx + i ∗∆ramp, P
max
tx }

Avoid Tx of previous i attempts:
i = 1→ no Tx of 1st unramped attempt
i = 2→ no Tx of 1st unramped and 1st ramped attempt
i = 3→ no Tx of 1st unramped and 1st/2nd ramped attempts

+1 CL

Transmit initial attempt with CLx+1 configurations:{
N

CLx+1
rep

PNPRACH
tx,opt = Pmax

tx

Avoid Tx of previous NCLx
att attempts in CLx

+2 CLs

Transmit initial attempt with CL2 configurations:{
NCL2

rep

PNPRACH
tx,opt = Pmax

tx

Avoid Tx of previous NCL0
att +NCL1

att attempts in CL0 and CL1

Fail Follow "+2 CLs" As for "+2 CLs"

dataset is significantly imbalanced from the RA outcome per-
spective, we balance it across operators and scenarios adopting
the well-known ADASYN method [38] [39]. We then train
four classifiers, that is, multi-class Support Vector Machine
(SVM) with linear kernel, k-Nearest Neighbors (kNN) with
k = 1, Decision Tree (DT), and Random Forest (RF). RF is
a well-known extension of DT, being an ensemble classifier
allowing parallel construction of multiple trees, by resampling
with replacement the training data (i.e., bagging) [40].

For our analysis, we perform the training/classification 10
times, each time extracting 500 random samples per class from
the balanced dataset. Moreover, we adopt RSRP, RSRQ, and
SINR as features, due to their importance highlighted in the
previous analysis. Finally, we use 50 trees for RF. As visually
reported in [22], this is a good yet conservative choice for all
the scenarios, since we observe the RF accuracy to converge
with about 10-20 trees in DI and I scenarios, while it keeps
slightly increasing with more than 20 trees in the O scenario.

We show the obtained average 10-folds cross-validation
accuracy for each classifier in Fig. 6, across scenarios and
operators. We preliminary observe that the classification per-
forms slightly better on Op2 dataset, except in I scenario,
where the task is inherently simpler for Op1, since in this
case one class is missing (RA Fail). Moreover, the increased
dynamicity in the O scenario challenges the classification,
resulting in lower accuracy. Comparing the classifiers, linear
SVM shows the worst accuracy, hinting that the faced problem
may have some non-linearities to be taken into account. kNN
and DT have instead similar performance, significantly better
compared to SVM. As regards RF, it slightly improves DT
(between 0-5%) in DI and I scenarios, suggesting that DT,
which is computationally faster and simpler than RF, can be
reliably used in these scenarios. However, the improvement
with respect to DT peaks at 9% in O scenario, hinting that
the challenges posed by the dynamicity of this scenario can
be better handled by more advanced classifiers. Considering
the results, we pick RF and perform a deeper analysis aiming
at better understanding the impact of using different sets of
features on the achievable accuracy.

Figure 7 reports the Out-Of-Bag (OOB) classification accu-
racy per scenario, operator, and adopted feature set, adopting
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Fig. 6: 10-folds cross-validation accuracy for SVM, kNN (k = 1),
DT, and RF (50 trees) classifiers across scenarios and operators (Op1:
left, Op2: right). The feature set is {RSRP, RSRQ, SINR}.
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Fig. 7: Out-of-bag classification accuracy in case of DI, I, and O
scenarios (Op1: left, Op2: right). RF uses 50 trees.

a RF classifier with 50 trees. In this case, we run the clas-
sification with 500 random samples per class, and average
over 20 executions. The OOB accuracy is calculated as the
average prediction accuracy on the training samples, where
each sample is predicted by using the trees trained with a data
bootstrap not including that specific sample. It complements
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TABLE IX: Power and repetitions saved by adopting the RA outcome prediction scheme and the action set in Table VIII. RA parameter
values are assumed as in Table III; PNPRACH

tx evaluation follows Eq. (5).

RA Result Saved power Saved repetitions
Case 1: PNPRACH

tx + i ∗ 2 < Pmax
tx ∀i ∈ [1, 3] (a) Case 2: PNPRACH

tx ≥ Pmax
tx

1st Attempt – – –

Power Ramping
at ith attempt (b)

2 ∗ [i ∗ PNPRACH
tx + i ∗ (i− 1)] 2 ∗ i ∗ Pmax

tx 2 ∗ i

+1 CL CL0 → CL1: 8 ∗ PNPRACH
tx + 24

CL1 → CL2: 32 ∗ Pmax
tx

CL0 → CL1: 8 ∗ Pmax
tx

CL1 → CL2: 32 ∗ Pmax
tx

CL0 → CL1: 8

CL1 → CL2: 32

+2 CLs 8 ∗ PNPRACH
tx + 24 + 32 ∗ Pmax

tx 40 ∗ Pmax
tx 40

Fail As for "+2 CLs"
(a)As in Table VIII, i ∈ [1, NCL0

att − 1] and does not include the first unramped RA attempt. From Table III, NCL0
att = 4 for both operators.

(b)E.g., predicting a RA success at i = 1 allows to avoid the transmission of the 1st unramped attempt (repeated NCL0
rep = 2 times).

to one the OOB error, which is a well-known performance
indicator for bagging-based algorithms.

We clearly observe that the accuracy depends on the adopted
feature set. In particular, the combination of the three radio
parameters significantly improves the performance, compared
to the cases in which such parameters are used standalone. On
this aspect, we notice that a) SINR standalone provides the
best classification results in most of cases compared to RSRP
and RSRQ, and b) the use of the entire set of initial features
(denoted as ALL in Fig. 7), comprising of CL and Ptx, does not
bring significant gains compared to the {RSRP, RSRQ, SINR}
set, confirming the results of the feature selection analysis.
Across operators, we also observe that, independently from
the adopted feature set, the classification performs better on
the Op2 dataset, apart for the I scenario, due to the same reason
discussed for Fig. 6.

For DI and I scenarios, and {RSRP, RSRQ, and SINR}
set, the classification accuracy lies between 80-90%, indicating
that RA outcomes can be reliably predicted, and in turn used
to enhance the standardized procedure. We complement these
results in [22], where we report and discuss the confusion ma-
trix for each operator/scenario configuration, showing which
RA outcomes are more challenging to predict correctly.

We now assume to embed the outcome prediction in the
RA procedure, and analyze the possible advantage of doing so.
We propose a centralized implementation, thus considering the
operators being able to collect a good amount of executions
and outcomes for the standard Rel-13 RA (e.g., via campaigns
with dedicated testing devices or by monitoring the devices
registered to the network). This allows to train the RF classifier
and derive the decision trees for properly selecting one of the
optimized RA actions in Table VIII (e.g., "If RSRP, SINR, and
RSRQ are below these thresholds (derived by the classifier),
start RA with CLx+1 rather than CLx configurations", where
CLx is derived via Eq. (4)). Then, we propose a slight
modification of SIB signaling (e.g., an enhanced SIB2), which
would allow each cell to share the mapping between radio
conditions and optimized RA actions, ultimately enabling the
device to pick the best configuration considering its current
status. Backward compatibility can be achieved via a flag
indicating the usage of either standard or enhanced procedure.
SIB messages can be also easily updated, in case a remapping
between conditions and suggested actions is needed (e.g., due
to availability of new measurements for classifier retraining).

We report in Table IX the amount of saved power and
repetitions when we take a correct outcome prediction and
perform the corresponding action proposed in Table VIII. In
order to evaluate the power saving, we distinguish upper and
lower bound cases, referred to as Case 1 and Case 2. In both
cases, the power for transmitting the first attempt is evaluated
via Eq. (5); then, in Case 1, such power is low enough so that
the possibly needed successive attempts with power ramping
are all transmitted with a power lower than Pmax

tx . On the
contrary, in Case 2, Eq. (5) returns a power equal to Pmax

tx ,
and hence all successive attempts are also transmitted at Pmax

tx .
Observing Table IX, we describe in particular the savings

achievable when a success after +2 CLs is correctly predicted,
since the other cases can be straightforwardly derived in a
similar way. In this situation the optimized RA procedure
directly starts with CL2 configurations (Table VIII), thus
avoiding NCL0

att = 4 attempts in CL0 (each repeated NCL0
rep = 2

times) and NCL1
att = 4 attempts in CL1 (each repeated NCL1

rep = 8
times). Assuming that the avoided attempts in CL0 are in
either Case 1 or Case 2, it follows that the saved power for
not transmitting them (and corresponding repetitions) is either
8 ∗ PNPRACH

tx + 24 or 8 ∗ Pmax
tx . Specifically for Case 1, the

constant value of 24 dB represents the effect of ramping the
power for transmitting the consecutive attempts. Considering
∆ramp = 2 dB, then the two repetitions of the first attempt are
both ramped of 2 dB with respect to the very initial (unramped)
preamble, the ones of the second attempt are ramped of 4 dB,
and finally the ones of the third attempt are performed with a
power ramping of 6 dB each.

Moreover, the saved power for not transmitting the attempts
in CL1 (and corresponding repetitions) is always equal to 32∗
Pmax

tx , since they are always transmitted at maximum power.
Hence we obtain a saved power equal to 8 ∗PNPRACH

tx + 24 +
32 ∗ Pmax

tx (Case 1) or 40 ∗ Pmax
tx (Case 2).

In order to evaluate the relative power savings with respect
to the standardized procedure, we assume that the RA achieves
a success in the first attempt in CL2, transmitted NCL2

rep = 32
times at full power. Hence, the standard procedure would
transmit a total of 9 attempts, with a global used power of
8 ∗ PNPRACH

tx + 24 + 64 ∗ Pmax
tx (Case 1), while the optimized

procedure would adopt a unique attempt transmitted with a
power of 32 ∗ Pmax

tx . Assuming that the power consumed for
CL0 (and power ramping) attempts is negligible with respect
to the power needed for the CL1 attempts, i.e., 8∗(PNPRACH

tx )+
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24 << 32∗Pmax
tx , then we conclude that, compared to standard

RA, the optimized procedure more than halves the power
consumption in Case 1, with a maximum reduction of 55%
in Case 2. In terms of repetitions, in both Cases 1 and 2, 32
repetitions are used instead of 72, with a reduction of 55%.

We finally conclude our analysis by highlighting again
the accuracy decrease occurring in the O scenario, evidently
due to higher dynamicity and in turn unpredictability. The
result suggests that other variables, along with more advanced
classifiers, should be exploited in this case, e.g., mobility-
related information. The analysis of such variables opens the
way for future work toward better understanding how to move
forward cellular-based mobile IoT deployments and services.

VI. RELATED WORK

In this section, we report and analyze relevant literature in
the context of NB-IoT RA, and also emphasize differences
and contribution of the present work.

Besides [7], which analyzes NPRACH design rationale,
several works have performed analyses of NB-IoT RA. The
work in [8] proposes a RA model taking roots from [41] [42],
which investigated slotted ALOHA in OFMDA systems. The
model considers stationary devices performing RA in three
CLs, and estimates success probability and average access
delay in terms of number of contending, successful, and col-
lided devices. Simulations show that CL0 devices have higher
success probability than those in CL1 and CL2, with these latter
also experiencing higher delays. The model is then extended
in [9] and [10]. Such works also discuss possible schemes
for optimizing RA configurations, aiming at maximizing the
success probability under a maximum admissible access delay
[9], or assuring fair access to users belonging to different CLs
[10]. The parameters being optimized are the number of CLs,
Natt, and, for each CL, NCLx

att , backoff windows, and number
of subcarriers. The work in [9] confirms that the adoption of
three CLs is a reasonable choice. Then, it is observed that
if NPRACH periodicity increases with the CLs, optimal RA
configurations have a) backoff windows also increasing with
the CLs, and b) NCLx

att = Natt for each CL. Indeed, it is
demonstrated that configuring NCLx

att < Natt does not lead to
higher success probability. A rule for deciding the CL at which
24 subcarriers should be assigned (out of 48 available, as seen
in §II-B2a, and with the other two CLs having 12 subcarriers
each) is also given. The same optimization scheme is then used
in [10], where a fairness mechanism is added by computing
the Jain’s index [43] across users in different CLs.

Such optimized settings are interesting but differ from the
configurations currently in use in operational networks. E.g.,
Table III shows that both operators use the same NPRACH
periodicity and number of subcarriers across CLs, and adopt
NCLx

att < Natt for each CL. We also notice that models
and strategies in [8]–[10] are purely probabilistic and do not
consider practical factors, such as radio propagation, CL esti-
mation, and power control. A similar simulation-based analysis
is proposed in [11], focusing on the backoff mechanism. This
is modeled as a Markov chain, while a capacity-limited First-
In-First-Out (FIFO) queue is used to represent the device data

buffer. The work in [12] also introduces a RA model and open-
sources the simulator implemented for testing, which is based
on LTE-Sim [44] and handles different CLs, attempt counters,
and backoff windows.

The RA model in [13] considers the effects of radio
propagation and power control (without ramping) on success
probability, taking into account the SINR of preambles. The
path loss model includes a distance-based loss and identically
distributed Rayleigh fading, following [45]. A single CL is
however assumed to simplify the analysis. Same assumptions
are adopted in [14], which also targets simulation-driven RA
performance evaluation. Results show that the success proba-
bility decreases as the interference due to contending devices
increases. The effect of repetitions on RA reliability is also
highlighted. On the one hand, it is observed that repetitions
increase the success probability; on the other hand, it is shown
that the standard number of repetitions may be insufficient
in heavy traffic scenarios, failing to provide the 99% success
probability requirement. The works in [15] and [16] extend
[13] by considering three CLs. In particular, [16] compares
backoff and access barring schemes, showing improvements
through their joint use.

As regards RA enhancements, the work in [17] proposes
to reduce collisions by slightly sacrificing preamble detection
probability, adopting so-called partial preamble transmission.
As anticipated in §IV-B, [18] discusses the trade-off between
RA repetitions and attempts, assuming a system with one CL.
It is shown that repetitions positively affect success probability,
access delay, and power consumption in low SINR situations,
while retransmissions are sufficient in good conditions.

A RA improvement named TARA is proposed in [19].
TARA is based on Time Alignment (TA), i.e., the estimated
time delay between a device and a cell, needed to keep
these two synchronized. TARA allows each device to perform
two RAs in two consecutive RAOs. A TA-based RA can be
executed if the first standard procedure fails. The cell uses a
modified Msg2 in order to broadcast a) the list of TA values
estimated for the collided preambles, and b) information on the
UL resources allocated to these values. Then, the device tries
to match its TA value with one of the candidates. If a match
is found, the device continues its RA with a Msg3 transmitted
on the allocated resources. Simulations show that TARA leads
to higher success probability and throughput, and lower access
delay compared to the standard RA.

A power efficient RA scheme is proposed in [20]. In this
case, standard RA is modified so that the device failing a RA
attempt in CLx is not forced to try NCLx

att −1 times more before
moving to CLx+1. It can instead re-evaluate RSRP and prob-
abilistically jump into another CL. Simulations show higher
power efficiency compared to standard RA. This scheme may
be considered as a reactive version of the one proposed in
this paper. Indeed, it includes at least one failed attempt in
CLx (estimated via Eq. (4)). Our approach is instead proactive,
since it allows to directly use an optimized configuration, con-
sidering previously acquired knowledge and corresponding RA
outcome predictions. Moreover, power ramping is neglected in
[20], while we keep it in our scheme, since we show it is key
for achieving RA successes without increasing repetitions.
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Aiming at more general NB-IoT performance analyses,
RA is also evaluated in [46] and [47]. On the one hand,
[46] models the resource allocation across DL/UL channels,
showing the impact of repetitions on device battery lifetime
and delay. On the other, [47] focuses on UL performance,
including a Markov chain for the backoff mechanism. The
path loss model in [48], derived from measurements of 95
macrocells in the US, is used to simulate the radio propagation.

With respect to the above works that are based on theoretical
and simulation analyses, this paper provides an empirical
analysis on how radio conditions and operators’ configurations
affect RA procedure and outcomes. The analysis thus enhances
and complements the models, which have a stronger emphasis
on the impact of multiple devices, and can also be used to
configure the simulations with realistic parameters, ultimately
verifying the accuracy with respect to real scenarios.

Recent literature is increasingly proposing the use of ML
for optimizing NB-IoT systems. Among others, [49] proposes
a Multi-Armed Bandit (MAB) framework for enabling dis-
tributed dynamic spectrum access across devices, aiming at
reducing repetitions and energy consumption while increasing
the coverage. A Reinforcement Learning (RL) solution in the
form of Q-Learning is instead proposed in [50] for optimizing
CL selection and number of repetitions for each device.

A RL-based enhancement is also proposed in [51] and
extended in [52] and [53], aiming at optimizing several RA
parameters, including the number of preamble attempts and
repetitions. The cell performs the optimization via Q-Learning,
using prior history in terms of preamble collisions, successful
devices, and unused resources. The work in [53] shows that
adding a preliminary traffic prediction step (e.g., for predicting
the number of preambles sent in the next frame) via a
Recurrent Neural Network (RNN) can lead to further access
improvements. Clearly, our work is also a ML-based RA
enhancement, but exploits the application of offline supervised
ML on empirical data rather than online RL. The two enhance-
ments seem to nicely complement each other, as we propose a
method for better configuring and adjusting the RA procedure
with respect to radio conditions and environmental scenarios,
while [51]–[53] propose a scheme for better coping with the
negative impact of massive connectivity and collisions.

VII. CONCLUSION

In this paper we present the first data-driven analysis of NB-
IoT RA. By leveraging a large scale measurement campaign,
we show the impact of network deployment, radio coverage,
and operators’ configurations on RA operations and outcomes.
In terms of success probability and access delay, we observe
that general requirements on such performance indicators are
met, but the increasing massive connectivity and scenario
heterogeneity will likely challenge these achievements, requir-
ing procedure optimization. In this direction, we propose a
ML-based scheme, preliminarily casting the RA explainability
problem as a classification task. By doing so, we show that RA
outcomes can be predicted with high accuracy by observing
radio conditions, i.e., RSRP, SINR, and RSRQ values. The
outcome predictor can be then used for driving the devices

toward optimized RA configurations, enabling at least 50%
power consumption reduction. We also discuss how such
scheme could be embedded in a lightweight manner in next
NB-IoT releases. For future work, we plan to replicate our
measurements in advanced system usage states, in order to
quantify the impact of massive connectivity, and test the
proposed prediction methodology in more dynamic scenarios,
ultimately aiming at possible enhancements.
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