
Resilient Hybrid SatCom and Terrestrial Networking
for Unmanned Aerial Vehicles

Paresh Saxena, Thomas Dreibholz, Harald Skinnemoen, Özgü Alay,
M. A. Vazquez-Castro, Simone Ferlin, and Guray Acar

Abstract—Today, Unmanned Aerial Vehicles (UAVs) are widely
used in many different scenarios including search, monitoring,
inspection, and surveillance. To be able to transmit the sensor
data from the UAVs to the destination reliably within tangible
response times to the relevant content is crucial, especially for
tactical use cases. In this paper, we propose network coded
torrents (NECTOR) to leverage multiple network interfaces for
resilient hybrid satellite communications (SatCom) and terrestrial
networking for UAVs. NECTOR is significantly different from
the state-of-the-art multipath protocols such as multipath TCP
(MPTCP) as it does not require any additional packet sched-
uler, rate-adaptation or forward error correction. We present
the design and implementation of NECTOR, and evaluate its
performance compared to MPTCP. Our experimental results
show that NECTOR provides goodput (up to 70%) higher than
MPTCP with 5.49 times less signaling overhead.

Index Terms—Network coding, torrents, UAVs, drones, Sat-
Com, cellular networks, multipath transmission, MPTCP.

I. INTRODUCTION

The civilian Unmanned Aerial Vehicle (UAV), also known
as “drones”, market is taking off due to significant improve-
ments in robotics and technology, which also lead to numerous
new applications including search, monitoring, inspection and
surveillance. Drones may often replace manned flights, by
taking the risk of losing lives out of the equation. Many
applications, such as pipeline monitoring, have high accident
risks due to flights in difficult conditions, e.g. at low altitude
with potential high wind gusts. Unmanned flights can be
also conducted at night and for longer duration compared to
manned flights.

Drones are equipped with different sensors, and users need
best possible sensor data within tangible response times to the
relevant content, especially for tactical use cases. For example,
cameras are the most common sensors that are used either
as the payload itself, for monitoring other operations, or for
providing a remote pilot a First Person View (FPV) live video.

P. Saxena is with BITS Pilani, Hyderabad, India (e-mail:
psaxena@hyderabad.bits-pilani.ac.in)

T. Dreibholz is with the Simula Metropolitan Center for Digital Engineer-
ing, Oslo, Norway (e-mail: dreibh@simula.no).

H. Skinnemoen is with AnsuR Technologies AS, Oslo, Norway (email:
harald@ansur.no)

M. A. Vazquez-Castro is with Autonomous University of Barcelona,
Barcelona, Spain (e-mail: angeles.vazquez@uab.es.)

Ö. Alay is with University of Oslo and Simula Metropolitan Center for
Digital Engineering, Oslo, Norway (e-mail: ozgua@ifi.uio.no).

S. Ferlin is with Ericsson AB, Stockholm, Sweden (e-mail: si-
mone.ferlin@ericsson.com).

G. Acar is with the European Space Agency, Noordwijk, The Netherlands
(e-mail: Guray.Acar@esa.int).

Streaming video requires a good communication channel,
and considering the drones often fly in very remote areas,
the only reliable form of communications is via satellites.
Satellite communications (SatCom) can be both, expensive and
limited in capacity. Occasional cellular coverage via terrestrial
networks may be available, but, in general, these are designed
for ground and not aerial coverage. Therefore, there exists
many coverage holes. Using satellite together with cellular
when available will still provide gains even if the extent of the
cellular availability is in general unknown. Thus, in this paper,
we focus on the drone use case, and we study the benefits of
using the combination of one reliable low-bandwidth SatCom
with several potential high capacity cellular networks with less
availability and reliability, in order to enable resilient and high
capacity communication for the drones.

Simultaneous use of multiple networks can lead to signifi-
cant performance improvement in terms of reliability, through-
put, traffic offloading, improved quality of service, etc. [1]–[4].
However, combining multiple networks with heterogeneous
characteristics is challenging. This challenge can partially be
addressed with Multi-Path TCP (MPTCP) [5], which is a
well-known protocol that leverages multiple networks simul-
taneously to provide reliability and bandwidth aggregation.
However, MPTCP’s widely adoption is hindered due several
factors [6], and the protocol inherits several of the well-
known challenges with TCP such as head-of-line blocking.
Furthermore, strenuous efforts should be made to utilise the
aggregated capacity when network conditions change rapidly,
and for each network individually, since the scheduling deci-
sions need a robust estimation of the capacity of each network,
which, in a UAV scenario, may be rapidly changing.

In this paper, we present the design and implementa-
tion of Network Coded Torrents (NECTOR), an UDP-based
application-level multipath solution. Our primary use case is
a source node located remotely, e.g., an UAV, connected with
a set of networks e.g. satellite, 3G/4G, radio, as shown in
Fig. 1, sending data for tactical Intelligence, Surveillance and
Reconnaissance (ISR) operational video. Although NECTOR
is a generic protocol that can be used in other scenarios, in
this paper we focus on addressing the challenge of providing
resilient communications for UAVs that are equipped with
multiple networks with varying coverage and capacity. Our
network-coded torrent-based approach jointly tackle the above
challenges using two key technologies: torrents [7] and Net-
work Coding (NC) [8]. The torrent-based strategy requires no
additional rate adaptation per network, since it is driven by



Fig. 1: Use case: UAV is sending data to a remote location over different networks including satellite and terrestrial networks.

the packet requests from the receivers. Additionally, there is
no need for designing an efficient scheduler to distribute and
track packets when NC is used, since linear combinations of
the same packets are sent instead of uncoded packets.

The main contributions of this paper can be summarized as:
• We design and implemented an UDP-based application-

level multipath data transfer solution NECTOR atop of
two key technologies: torrents and NC. NECTOR is
a comprehensive multipath networking solution without
the need of scheduling, rate-adaption or forward error
correction algorithms.

• We conduct extensive evaluations with NECTOR and
compare its performance against MPTCP when multiple
networks are available. We focus on the combination of
low bandwidth and high reliable SatCom with cellular
networks with lower availability and average reliabil-
ity. Our results show that NECTOR provides up to
70% higher average goodput when the networks vary
slowly but are unavailable for longer duration.

II. RELATED WORK

There are several proposals leveraging the benefits of
NC together with the benefits of multipath transport using
MPTCP [9]–[14]. However, they are mainly focusing on the
integration of NC on the TCP level to provide a sub-flow
selection control policy for network-coded packets, i.e. NC is
applied on each TCP connection individually. These solutions
inherit several TCP shortcomings, e.g. poor performance over
networks with high losses and high delays, and they are
also unable to fully profit from the benefits of multipath
transport. In [13] Pseudo-Random Network Coding (PRNC) is
also proposed for MPTCP, with the goal of reducing the NC
overhead and increase the overall throughput. However, PRNC
has shown to not scale with re-encoding at the intermediate
nodes [14]. One of the reasons is that while it is easy to
select a seed for the encoding vector at the source, it is not
straightforward to do the same for the re-encoding vector at
intermediate nodes. To make this possible, an extension of
PRNC requires the synchronisation of all nodes and potential
additional complexity with large lookup tables.

For proposals integrating network coding with torrents,
in [17], the authors investigate the performance of network
coding and torrents for peer-to-peer content distribution net-
works followed by [18] and [19] for vehicular ad-hoc networks

and Bluetooth, respectively. Furthermore, [20] and [21] verify
the feasibility of a hybrid cellular and vehicular-to-vehicular
(V2V) collaborative content distribution network. Finally, [22]
studies the performance of chunked NC in wireless cooperative
downloads. Our work departs from these, where we investigate
the benefits of NC and torrents for content distribution over
multiple network interfaces. NECTOR uses network coding
to provide both resilience against network outages and to
counter for packet losses. Following this area of work, we have
compared our proposal with state-of-the-art MPTCP protocol.

III. NECTOR DESIGN

In this section, we first describe the system model we
considered and then we provide an overview of the NECTOR
protocol and describe the torrents’ operation. We then present
how NC is incorporated into the system and then finally
discuss the implementation aspects.

A. System Model

Let us consider that a source node, e.g., UAV is connected
to a destination node, e.g. control center, via f networks as
shown in Fig. 2. Each network is characterized by bandwidth,
delay and packet loss. Let us denote bi (in Kbps), di (in ms)
and pi (in %) as the bandwidth, delay and packet loss of the
i-th network, respectively.

At the source node, the data is segmented into small
files, referred as Datagrams (DGRAM). These datagrams are
transmitted using torrent-based technology [7]. Each datagram
is further segmented into several small chunks. Each chunk is
segmented into several slices. Fig. 3 illustrates the integration
of the NECTOR in the end-to-end protocol architecture.

B. Overview of NECTOR Protocol

An overview of the NECTOR protocol and its data units is
presented in Fig. 3. For transmission, a DGRAM is encoded
into chunks; each chunk is further encoded into slices. We
assume the size of each datagram D is nd (in bytes). We
denote the j-th chunk as Cj , and its size as nc (in bytes) where
j = 1, 2, . . . , n with n =

⌈
nd

nc

⌉
as the number of chunks per

datagram. We denote the k-th slice as Sk and its size as ns (in
bytes) where k = 1, 2, . . . ,m with m =

⌈
nc

ns

⌉
as the number of

slices per chunk. Then, we have D =
[
C1 C2 . . Cn

]
and Cj =

[
S1 S2 . . Sm

]
.



Source Destination

b1, d1, p1

b2, d2, p2

bf, df, pf

.

.

Fig. 2: System model illustrating the multipath communication
between a source node and destination.

C. Torrents Operation

The operations of the NECTOR protocol with torrents can
be summarised as follows: First, the torrent file that describes
the hash table, which contains key values of chunks, is sent
to the receiver. This assures the verification of integrity and
authenticity. Torrents have a receiver-driven method, where it
pseudo-randomly asks particular chunks or a set of chunks
from the sender. Once these are received, new chunks are
requested. In this way there is load balancing on all the
networks and a slow network would send fewer packets [7].
The receiver-driven packet request mechanism removes most
of the scheduling complexity at the sender side and the need
to estimate the network capacity per network. Although the
torrents can use any underlying protocol, we choose to use
UDP. Compared to TCP, NECTOR ensures reliability at the
application layer through NC.

D. Network Coding

Sending chunks via torrents over a network with possible
outages and losses may reduce the performance. Therefore,
to assure reliability, NC is performed and coded packets are
generated. As illustrated in Fig. 3, NC is implemented at both,
chunk and slice level. The chunk level NC assures the delivery
of network-coded chunks via different paths without the need
of any specific scheduling, while the slice level NC assures the
reliability against packet losses. Each slice is then transported
as UDP datagrams over the different networks to the receiver.

1) NC at Chunk Level: We call “chunk NC generation” a
set of n chunks, denoted as Xc ∈ Fnc×n

q with elements chosen
from a finite field Fq . We use rateless NC at chunk level. The
encoder can generate a fountain of (coded) chunks and stop
transmission only when it receives the signal from the receiver.
This is the best for torrent-type and larger blocks, where there
is time to stop or signal to continue sending more chunks.

2) NC at Slice Level: We call “slice NC generation” a set
of Ks slices, denoted as Xs ∈ Fns×Ks

q . We assume per-slice
NC generation block coding with block length Ns. We denote
ρ = Ks

Ns
as slice-level coding rate.

In both cases, we assume each coded chunk is generated by
a linear combination of the chunk NC generation with coding
coefficients from either deterministically or randomly chosen
columns of Pascal matrices Pq of size q × q, see [23].

Fig. 3: NECTOR protocol stack and data units overview.

E. Implementation

NECTOR is implemented in C++ using libraries that make
it independent of the underlying operating system. The sender
side accepts DGRAMs from the application. The datagrams
are passed by shared memory. Once there is a new datagram,
the sender starts producing the chunks, creating the torrent
file. The torrent file is provided to a tracker (fixed at known
addresses), which signals the availability of the new file to the
receiver. Then, the receiver starts to initiate chunk transfers
by requesting a chunk over each path. The sender transmits
a chunk over a path as bursts of its configured number of
slices. Since each path transports only one chunk at a time,
there is no need for congestion control. Note, that the paths
are independent and – in case of UAV operations – each
path is exclusively usable. Once a chunk is decodable (i.e.
a sufficient number of NC-coded slices has been received to
successfully compute the chunk), or no further slice has been
received within a configured timeout (i.e. the chunk transport
has failed), a new chunk is requested by the receiver on
the path. The receiver signals the sender to stop the entire
transmission once it has a sufficient number of NC-coded
chunks received to decode the full datagram. If there is a new
torrent file available while the transmission is still in progress,
the current transmission is aborted (since the datagram became
obsolete, and continuation would be useless) and the transfer
of the new datagram is initiated instead. The datagram is then
passed by shared memory to the application.

IV. MEASUREMENT SETUP AND PERFORMANCE METRICS

In order to better understand the impact of different network
settings on NECTOR, we describe our constructed testbed
together with the experimental setting in Subsection IV-A and
the performance metrics in Subsection IV-B.

A. The Testbed Setup

We built a small scale testbed to evaluate the performance
of NECTOR over off-the-shelf products that can be used
in UAVs. Figure 4 shows our testbed consisting of two
fanless mini-computers IPC3 (Intel Core i7@2.7 GHz, 4 GiB



Fig. 4: Testbed setup

SDRAM) and three single board computers Odroid-XU4. The
mini-computers are used as sender and receiver, while Odroids
are used for network emulation. Two IPCs are connected via
three Odroids via Ethernet. All Odroids run Linux Traffic
Control (tc) with Network Emulation (netem) and the Token
Bucket Filter (tbf) queuing discipline to limit bandwidth, vary
delay and add network impairments such as packet loss. For
most of the measurements, we focus on the scenario in Fig. 4
with three network paths and sender and receiver with three
interfaces. All machines run Ubuntu Linux 16.04, and the
IPC3s run the Linux kernel v4.19 with Linux MPTCP v0.95.

We consider four scenarios as shown in Table I. In each
scenario, network 1 is configured to behave as a satellite
link while networks 2 and 3 are configured to behave as low
bandwidth cellular links, mimicking 2G/3G coverage in rural
areas. The bandwidth and delay characteristics of network 1, 2,
and 3 are illustrated in Table II. The experiments’ bandwidth
settings follow the variations shown in Fig. 5 with a two-state
on-off model: The ith network is available during tON

i and
unavailable during tOFF

i . In other words, the bandwidth is bi
during tON

i and 0 during tOFF
i .

Furthermore, we have considered that network 1 (satellite
link) is always available while networks 2 and 3 availability
(cellular links) vary over time based on Fig. 5. Such a con-
figuration is common in cellular networks as 2G/3G networks
can have coverage holes, especially in high altitudes and rural
areas, and as the UAVs travel, it will get in and out of coverage.
The on/off time duration is configured such that network 2
is mostly available (66.67% of total time) and network 3 is
hardly available (33.33% of total time) in scenarios 1, 2 and
3. In scenario 1, we are emulating fast bandwidth variations
and in scenario 3 we are emulating slow bandwidth variations.
Note that in case of scenario 1, 2 and 3, we considered that
all three networks are available at the start of the experiments.
Finally, we have also considered the scenario where on/off
time duration varies randomly between 1 and 10 seconds. In
this case, tON

i = rand(1, 10) and tOFF
i = rand(1, 10), i.e.

they take random values between 1 and 10 seconds.

B. Performance Metrics

The total time taken to transfer a datagram from the sender
to the receiver is given by T (in s). The application layer

Time (s)

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s) Time (s)
0 00

b
2

b
3

b
1

t
2

OFF
t
1

OFF

t
2

ONt
1

ON t
3

ON

t
3

OFF

Fig. 5: Two-state on-off model for bandwidth variations

performance is defined as goodput (γ) (in Kbps) as the number
of useful information (nv) delivered at the receiver per unit of
time:

γ =
8× nv
T

. (1)

The utilization ratio (θ) is given as the goodput divided by the
sum of the total bandwidth of all f networks:

θ =
γ∑

i bi(1− pi)
. (2)

The receiver has f interfaces corresponding to f networks,
where nri as is the number of bytes received, and nsi as is the
number of bytes sent by the ith interface of the sender. The
total number of bytes at the receiver are: nrall =

∑
i n

r
i , where

overhead (η) is defined as additional bytes nrall − nd divided
by the datagram size nd:

η =
nrall − nd

nd
. (3)

Finally, we also define µi as the percentage of network traffic
load shared by the ith network:

µi =
nri
nall
× 100. (4)

V. RESULTS

In this section, we will first discuss the optimal selection of
n and then present the performance of NECTOR as compared
to MPTCP for the different scenarios discussed in Section IV.
We further discuss NECTOR’s performance under lossy path
characteristics and discuss the limitations of the protocol.

Optimal selection of n: We first study the impact of
n on the performance of NECTOR. In order to find the
optimal n, we run some preliminary experiments. We chose
n ∈ {8, 16, 32, 48, 64, 80, 96, 112, 128} and observe that the
goodput is comparatively higher from NECTOR when n = 32
and n = 48. In general, we observe that the larger the number
of chunks, the smaller is the goodput. The reason is that the
encoding and decoding complexity of the network coding is
proportional to the number of chunks [24]. When the number
of chunks is higher, the overall encoding and decoding time
is higher which increases the overall time duration. Hence,
the goodput decreases with the increase in the number of



Scenarios Network 1 (SatCom) Network 2 (Cellular) Network 3 (Cellular)

Scenario 1 tON
1 = ∞, tOFF

1 = 0 tON
2 = 10, tOFF

2 = 5 tON
3 = 5, tOFF

3 = 10

Scenario 2 tON
1 = ∞, tOFF

1 = 0 tON
2 = 20, tOFF

2 = 10 tON
3 = 10, tOFF

3 = 20

Scenario 3 tON
1 = ∞, tOFF

1 = 0 tON
2 = 30, tOFF

2 = 15 tON
3 = 15, tOFF

3 = 30

Scenario 4 tON
1 = ∞, tOFF

1 = 0 tON
2 = rand(1, 10), tOFF

2 = rand(1, 10) tON
3 = rand(1, 10), tOFF

3 = rand(1, 10)

TABLE I: Four scenarios with different on/off time duration.

Network 1 (SatCom) Network 2 (Cellular) Network 3 (Cellular)

b1 = 150Kbit/s b2 = 1000Kbit/s b3 = 1000Kbit/s

d1 = 250ms d2 = 50ms d3 = 50ms

TABLE II: Network Parameters for Satcom and Cellular links

chunks. However, the values that we observe are specific to
the computational power (hardware) used in the experiments.
These values may change if machines with higher/smaller
processing capabilities are used but we expect a general trend
results where the goodput will decrease with the increase in the
number of chunks. Due to space constraints, for the remainder
of the paper, we present the results and analysis only for
n = 32 and n = 48.

Performance evaluation for different scenarios with
on/off model: We now focus on NECTOR’s performance
evaluation compared to MPTCP for the scenarios in Table
I with network settings in Table II. We measure goodput
for both NECTOR and MPTCP, and the goodput percentage
gain and the network utilization ratio for NECTOR in Table
III. The datagram size is configured as nv = 10Mbyte, i.e.
video encoded at 500 Kbit/s for 160 seconds and we have
limited ourselves to 50 iterations for each experiment. In our
experiments, NECTOR achieves higher utilization ratio, with
66.95% compared to only 46.69% of MPTCP in scenario
3. As a consequence of better utilization, NECTOR also
consistently achieves a higher goodput than MPTCP in all
scenarios. We observe that, NECTOR achieves up to 70% and
43.38% higher goodput compared to MPTCP in scenario 2
and scenario 3 respectively, when the networks vary slowly
and then become unavailable for longer duration. We observed
in the experiments that with slow variations, MPTCP seems to
take time for ramping up the transfer speed, while NECTOR
utilizes most of the capacity when the networks are available.

In Figure 6 we present the following metrics measured
at the receiver for all scenarios: (i) total number of bytes
received by each interface, i.e., nri (ii) total number of
bytes sent by each interface, i.e., nsi and (iii) percentage
of load shared by each interface, i.e., µi. Our results in-
dicate that the total number of bytes at the receiver, i.e.,
nallr , is smaller for NECTOR compared to MPTCP. In other
words, NECTOR requires less data to recover the datagram
of the same size. In scenario 3, the total number of bytes
received with MPTCP is nrall(MPTCP ) = 11.9 Mbyte,
whereas the total number of bytes received with NECTOR
is nrall(NECTOR) = 10.7 Mbyte. Thus, MPTCP requires
11.21% more data. We also show that the number of bytes

sent by the receiver, i.e. signalling data, is much smaller with
NECTOR compared to MPTCP. In scenario 3, the total number
of bytes sent with MPTCP is nsall(MPTCP ) = 0.39 Mbyte
whereas the total number of bytes received with NECTOR
is nsall(NECTOR) = 0.071 Mbyte. Thus, the signaling
overhead with MPTCP is almost 5.49 times larger.

Finally, we note that even with smaller capacity, the satellite
link carries a substantial amount of traffic, since it is always
available in all scenarios. For scenarios 1, 2 and 3, the satellite
link carries between 15% and 30% of the traffic. In scenario
4 with random network variations, the satellite link carries up
to 40% of traffic, due to more abrupt and frequent disruptions
of the other network paths (cellular networks).

Performance under Lossy Networks: NECTOR is shown
to provide gains in other scenarios as well. For example,
we have considered a different scenario, where instead of
using on/off bandwidth variations, we considered networks
with constant availability but have lossy characteristics. In
this scenario, as expected, the benefits of NECTOR evident.
NECTOR can provide up to 88.76% higher average goodput as
compared to MPTCP when 10% losses are configured in each
network. Even when losses are configured between 0% to 1%,
NECTOR seems to provide up to 5%-6% higher average
goodput than MPTCP. Due to space limitation, these results
have not been presented in this paper.

Limitations: We have also encountered limitations of NEC-
TOR. We observe that for higher bandwidth values, the
transmission time is smaller and therefore the network cod-
ing/decoding time of NECTOR shares a larger percentage of
the overall time duration. The encoding/decoding complexity
of network coding results in smaller utilization of the aggre-
gated bandwidth. Since these results depend on the hardware
used for testing, a better configuration of hardware can yield
to better performance of NECTOR as compared to MPTCP.

VI. CONCLUSION

In this paper, we have proposed NECTOR, which is a
powerful network coding solution that utilizes the aggregated
capacity of available multiple networks for transmission. We
have presented our experimental results that show the benefits
of NECTOR as compared to state-of-the-art MPTCP. In par-
ticular, our results show the performance gain of NECTOR in
different scenarios representing hybrid SatCom and terrestrial
networking for UAVs.

Future work includes the investigation of NECTOR on
more complex use cases including the transmission of sensor
data from UAV to the convoy (one-to-many connections).



TABLE III: Goodput from NECTOR (with n = 32 and n = 48) and MPTCP for different scenarios

Scenarios γ (NECTOR)
n = 32

γ (NECTOR)
n = 48

γ (MPTCP) Gain with
NECTOR
n = 32

Gain with
NECTOR
n = 48

θ (NECTOR)
n = 32

θ (NECTOR)
n = 48

θ (MPTCP)

Scenario 1 450 508 399 12.78% 27.31% 39.13% 44.17% 34.69%

Scenario 2 734 690 431 70.30% 60.09% 63.82% 60% 37.47%

Scenario 3 770 731 537 43.38% 36.12% 66.95% 63.56% 46.69%

Scenario 4 309 342 250 23.36% 36.80% 26.86% 29.73% 21.73%

n
1

r
n

2

r
n

3

r
n

all

r
0

2

4

6

8

10

12

D
a

ta
 R

e
c
e

iv
e

d
 (

M
b

y
te

)

n
1

s
n

2

s
n

3

s
n

all

s
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
a

ta
 S

e
n

t 
(M

b
y
te

)

MPTCP
NECTOR

µ
1

µ
2

µ
3

0

10

20

30

40

50
N

e
tw

o
rk

 T
ra

ff
ic

 L
o

a
d

 S
h

a
ri
n

g
 (

%
)

(a) Scenario 1

n
1

r
n

2

r
n

3

r
n

all

r
0

2

4

6

8

10

12

D
a

ta
 R

e
c
e

iv
e

d
 (

M
b

y
te

)

n
1

s
n

2

s
n

3

s
n

all

s
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
a

ta
 S

e
n

t 
(M

b
y
te

)

MPTCP
NECTOR

µ
1

µ
2

µ
3

0

10

20

30

40

50

60

70

N
e

tw
o

rk
 T

ra
ff

ic
 L

o
a

d
 S

h
a

ri
n

g
 (

%
)

(b) Scenario 2

n
1

r
n

2

r
n

3

r
n

all

r
0

2

4

6

8

10

12

D
a

ta
 R

e
c
e

iv
e

d
 (

M
b

y
te

)

n
1

s
n

2

s
n

3

s
n

all

s
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
a

ta
 S

e
n

t 
(M

b
y
te

)

MPTCP
NECTOR

µ
1

µ
2

µ
3

0

10

20

30

40

50

60

70

N
e

tw
o

rk
 T

ra
ff

ic
 L

o
a

d
 S

h
a

ri
n

g
 (

%
)

(c) Scenario 3

Fig. 6: Total number of bytes received, sent and network traffic load sharing from NECTOR (n = 32) and MPTCP.

Furthermore, we plan to study the impact of several other
factors including the limitations of network codes and bursty
network traffic on the performance of NECTOR.

ACKNOWLEDGMENT

This work has been supported by the European Space
Agency, under the contract number 4000118143/16/NL/EM
(HENCSAT), European Union’s Horizon 2020 research and
innovation programme under grant agreement No 815178
(5GENESIS) and SERB, DST, Government of India’s start-up
research grant agreement SRG/2019/002027 (MUT-DROCO).

REFERENCES

[1] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen. An In-depth
Understanding of Multipath TCP on Mobile Devices: Measurement and
System Design. In Proc. of ACM MobiCom, 2016.

[2] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen. Accelerating
Multipath Transport Through Balanced Subflow Completion. In Proc.
of ACM MobiCom, 2017.

[3] Sana Habib, Junaid Qadir, Anwaar Ali, Durdana Habib, Ming Li, and
Arjuna Sathiaseelan. The past, present, and future of transport-layer
multipath. J. Netw. Comput. Appl. 75, C (November 2016), 236-258.

[4] K. V. Yedugundla, S. Ferlin, T. Dreibholz, Ozgu Alay, N. Kuhn, P.
Hurtig, and A. Brunstrom, Is Multi-Path Transport Suitable for Latency
Sensitive Traffic? Computer Networks, vol. 105, pp. 1-21, Aug. 2016.

[5] Ford A., Raiciu C., Handley M., Bonaventure O. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC; 2013.

[6] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O.
Bonaventure, and M. Handley. How hard can it be? Designing and im-
plementing a deployable multipath TCP. In Proc. USENIX Conference
on Networked Systems Design and Implementation (NSDI), 2012.

[7] B.Cohen, “Bit Torrent Protocol1.0,” BitTorrent.org, Tech.Rep.
[8] D. S. Lun, M. Medard, R. Koetter, M. Effros, “On coding for reliable

communication over packet networks”, Phys. Commun., vol. 1, no. 1,
pp. 3-20, Mar. 2008.

[9] S. Gheorghiu, A. L. Toledo, and P. Rodriguez, “Multipath TCP with
network coding for wireless mesh networks,” in Proc. IEEE International
Conference on Communications (ICC), 2010.

[10] X. Zhuoqun, C. Zhigang, Y. Hui, and Z. Ming, “An improved MPTCP in
coded wireless mesh networks,” in Proc. IEEE International Conference
on Broadband Network & Multimedia Technology (IC-BNMT), 2009.

[11] Z. qun Xia, Z. gang Chen, Z. Ming, and J. qi Liu, “A multipath
TCP based on network coding in wireless mesh networks,” in Proc.
IEEE International Conference on Information Science and Engineering
(ICISE), 2009.

[12] A. Kulkarni, M. Heindlmaier, D. Traskov, M.-J. Montpetit, and M.
Médard, “An implementation of network coding with association poli-
cies in heterogeneous networks,” in Proc. IFIP TC International Confer-
ence on Networking (NETWORKING’11), 2011.

[13] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. M. Zeger and M.
Medard, “Multi-Path TCP with Network Coding for Mobile Devices
in Heterogeneous Networks,” IEEE Vehicular Technology Conference
(VTC Fall), Las Vegas, NV, 2013.

[14] G. Giambene et al., “Network coding applications to high bit-rate
satellite networks,” WiSATS 2015, LNICST 154, July 2015.

[15] S. Ferlin, S. Kucera, H. Claussen and O. Alay, “MPTCP meets FEC:
Supporting Latency-Sensitive Applications over Heterogeneous Net-
works“, IEEE/ACM Transactions on Networking, Volume 26 Issue 5,
October 2018.

[16] H. Skinnemoen, “Visual Situational Awareness: Revolutionizing UAV
Communication Via Satellite”, AUVSI Xpoential, 2018.

[17] C. Gkantsidis and P. Rodriguez, Network Coding for Large Scale
Content Distribution, in Proc. IEEE INFOCOM, 2005.

[18] U. Lee, J.-S. Park, J. Yeh, G. Pau, M. Gerla, “Code Torrent: Content
Distribution Using Network Coding in VANET”, in ”Proceedings of
the 1st International Workshop on Decentralized Resource Sharing in
Mobile Computing and Networking”, 2006.

[19] S. Jung, U. Lee, A. Chang, D.-K. Cho, M. Gerla, “BlueTorrent:
Cooperative content sharing for Bluetooth users”, in ”Pervasive and
Mobile Computing (PerCom)”, no. 6, pp. 609–634, 2007.

[20] R. Zhang, B. Yu, H. Krishnan, “Simulation Study on Collaborative
Content Distribution in Delay Tolerant Vehicular Networks”, in ”EEE
88th Vehicular Technology Conference (VTC-Fall)”, 2018.

[21] D. Recharte, A. Aguiar, H. Cabral, “Cooperative Content Dissemination
on Vehicular Networks”, in ”IEEE Vehicular Networking Conference
(VNC)”, 2018.

[22] X.-x. Wen, H.-q. Wang, J.-y. Lin, G.-s. Feng, H.-w. Lv, J.-z. Han,
“Performance analysis and optimization for chunked network coding
based wireless cooperative downloading systems”, in ”Frontiers of
Information Technology Electronic Engineering”, 2017.

[23] M. A. Vázquez-Castro, P. Saxena, T. Do-Duy, T. Vamstad and H. Skin-
nemoen, “SatNetCode: Functional Design and Experimental Validation
of Network Coding over Satellite,” 2018 International Symposium on
Networks, Computers and Communications (ISNCC), 2018.

[24] P. Saxena and M. A. Vázquez-Castro, “DARE: DoF-Aided Random
Encoding for Network Coding Over Lossy Line Networks,” in IEEE
Communications Letters, vol. 19, no. 8, pp. 1374-1377, Aug. 2015.


