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Peekaboo: Learning-based Multipath Scheduling for
Dynamic Heterogeneous Environments

Hongjia Wu, Özgü Alay, Anna Brunstrom, Simone Ferlin, Giuseppe Caso

Abstract—Multipath transport protocols utilize multiple net-
work paths (e.g., WiFi and cellular) to achieve improved perfor-
mance and reliability, compared with their single-path counter-
parts. The scheduler of a multipath transport protocol determines
how to distribute the data packets onto different paths. However,
state-of-the-art multipath schedulers face the challenge when
dealing with heterogeneous paths with dynamic path character-
istics (i.e., packet loss, fluctuation of delay). In this paper, we
propose Peekaboo, a novel learning-based multipath scheduler
that is aware of the dynamic characteristics of the heterogeneous
paths. Peekaboo is able to learn scheduling decisions to adopt over
time based on the current path characteristics and dynamicity
levels - from both deterministic and stochastic perspectives.
We implement Peekaboo in Multipath QUIC (MPQUIC) and
compare it with state-of-the-art multipath schedulers for a
wide range of dynamic heterogeneous environments, upon both
emulated and real networks. Our results show that Peekaboo
outperforms the other schedulers by up to 31.2% in emulated
networks and up to 36.3% in real network scenarios.

Index Terms—Multipath scheduling, Dynamic heterogeneous
paths, Multi-armed bandit, Stochastic adjustment.

I. INTRODUCTION

Multipath transport protocols allow the concurrent use of
multiple radio access technologies, such as WiFi and cellular,
for fast and reliable data exchange. In a generic scenario,
the sender distributes application data onto different available
radio interfaces, i.e., over different paths; the receiver reassem-
bles and reorders the data from different paths, sending them
transparently towards the application. By doing so, multipath
transport protocols aim at improving both transmission capac-
ity and reliability compared with their single-path counterparts.

In multipath transport protocols, the scheduler determines
how to distribute data onto the available paths, as represented
in Figure 1. The data packets from the application reside in the
send buffer, and the scheduler assigns each packet to a different
interface based on a particular scheduling policy. One of
the significant challenges for designing a multipath scheduler
is to deploy a policy, which deals with the heterogeneous
characteristics of paths, e.g., the combination of WiFi and
LTE networks. When the paths are heterogeneous, especially
in terms of delay and loss, sent packets will arrive to the
destination out of order, leading to head of line (HoL) block-
ing, ultimately reducing the performance. Recently, Blocking
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Figure 1. In a multipath scenario, the characteristics of the paths may be
heterogeneous and they often vary over time, especially in wireless networks
(e.g. WiFi or LTE). A multipath scheduler should take the dynamicity of each
path into account while determining the scheduling policy.

Estimation-based MPTCP Scheduler (BLEST) [1] and the
Earliest Completion First (ECF) [2] schedulers have been
proposed to target heterogeneous paths. They address the HoL
blocking problem by introducing a wait action, where the
scheduler can decide to wait for better conditions to come
for the transmission of a packet. While these schedulers work
well when the channel characteristics are rather stable, they
were not designed for dynamically changing characteristics.
However, the path dynamicity level, which is defined as the
degree of path delay variation and packet loss, can vary sig-
nificantly over time in real networks [3], [4]. For example, the
delay characteristics of a WiFi network in a public library can
vary significantly over time due to different numbers of users
creating different congestion levels, hence different dynamicity
levels during the day, as illustrated in Figure 1. Such changes
of dynamicity is particularly common in the current WiFi
and LTE networks, and expected to be even more prominent
in the upcoming 5G technology. Considering that the paths
can have dynamically changing channel characteristics, we
tested the state-of-the-art multipath schedulers over different
dynamicity scenarios, and we find that none of the state-of-the-
art multipath schedulers show consistently better performance
(§II).

In this paper, motivated by the above observations, we aim
to address the following research problem: How to design a
multipath scheduler that learns and adapts to heterogeneous
paths with dynamically varying channel conditions? To ad-
dress this problem, we propose Peekaboo, a novel learning-
based multipath scheduler that keeps monitoring the impact
caused by the current dynamicity level of each path and selects
the most suitable scheduling strategy accordingly. In order to
do so, Peekaboo first selects a deterministic strategy to deal
with different levels of dynamicity, i.e., choose a particular
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path or wait for better conditions for the transmission of a
packet. This is achieved using an online, adaptive learning
mechanism. It then applies a stochastic adjustment strategy on
top of the deterministic decision, in order to better counteract
the dynamicity experienced over the available paths.

From the methodology perspective, we treat multipath
scheduling as a decision-making problem. Decision-making
problems can be solved in different ways. Control theory
is a well known approach in this domain. However, most
efficient control theory tools fall into the domain of Linear
Time Invariant (LTI) systems, because of the mathematical
solvability [5]. Therefore, unless a specific module from the
networking system can be safely assumed as LTI, it is not
trivial to apply control theory into the multipath scheduling
problem. Reinforcement Learning (RL) is a popular method
to solve decision-making problems. A RL agent aims to learn
the policy that maximizes the cumulative reward obtained by
repeatedly interacting with its surrounding environment [6].
For example, the congestion control problem can also be
treated as a decision-making problem and RL algorithms are
shown to provide great benefits [7], [8]. Previous work has
also considered using Deep RL (DRL) methods for decision-
making problems, such as DeepRM [9] and Pensieve [10].
However, DRL increases the algorithm’s reaction time dramat-
ically [11] when the ongoing traffic deviates from the training
traffic, because of the required large amount of training traffic
and the slow convergence time.

In this paper, due to its proven benefits, we choose RL to
derive the deterministic scheduling strategy. We deliberately
adopt a lightweight approach in order to adaptively react
to varying path dynamicity levels in a timely manner. The
lightweight approach decreases the algorithm’s reaction time
but sacrifices the accuracy [12]. To mitigate the trade-off, we
propose and incorporate a stochastic adjustment strategy to
improve the algorithm accuracy. The contributions of our work
can be summarized as follows:
• We first formulate the multipath scheduling problem and

propose a lightweight and deployable online learning
solution to this problem. More specifically, given a dy-
namicity level, a deterministic strategy is derived by using
a RL algorithm applied in contextual Multi-Armed Bandit
(MAB) scenarios [13] (§III-A).

• We further formulate a stochastic adjustment strategy and
propose a lightweight derivation and selection of such an
adjustment strategy, analyzing its impact on the overall
scheduling policy, as a function of the dynamicity levels
experienced on the paths (§III-B).

• We combine the online learning solution with the stochas-
tic adjustment strategy in the final design of Peekaboo.
Peekaboo runs without any initial input and assumption
of the path dynamicity. To test its performance, we
implement Peekaboo in the Multipath QUIC (MPQUIC)
framework [14]. The source code of Peekaboo and all the
scripts to produce results are open source1.

• Finally, we present a multifaceted evaluation in dynamic
heterogeneous environments. First, we compare the per-

1https://mosaic-simulamet.com/peekaboo

formance of Peekaboo with state-of-the-art schedulers
across a wide range of emulation scenarios, by changing
bandwidth, delay, and loss rate variation (§IV). We then
carry out experiments in real networks (§V). We show
that Peekaboo consistently outperforms the state-of-the-
art schedulers performance for heterogeneous paths both
in emulations and in real network experiments.

The rest of this paper is organized as follows. In §II,
we present the background and motivation of our work. We
then detail the design of Peekaboo in §III and evaluate its
performance via emulations in §IV and real world experiments
in §V. We discuss our work in §VI and conclude in §VII.

II. BACKGROUND AND MOTIVATION

In this section, we first review the multipath transport proto-
cols (§II-A) and state-of-the-art multipath schedulers (§II-B).
We then reveal the shortcomings of these multipath schedulers
when dealing with different path dynamicity levels and present
the two key insights that motivate Peekaboo’s design (§II-C).

A. Multipath Transport Protocols

Today’s endhosts are often equipped with more than a single
network interface, and users expect to be able to use and switch
between them seamlessly. To leverage multiple interfaces, sev-
eral multipath extensions to transport protocols such as TCP
and UDP have been proposed. Concurrent Multipath Transfer
for SCTP (CMT-SCTP [15]), Multipath TCP (MPTCP [16]),
and Multipath QUIC (MPQUIC [14]) are to date the most
popular implementations. In multipath transport, three main
building blocks are often the objects of research: congestion
control [17], [18], [19], [20], [21], [22], path (or connection)
management [23], [24], [25], [26] and the scheduler [27], [2],
[28], [29], [1]. In this paper, we propose Peekaboo, a multipath
scheduling algorithm that is designed and implemented to be
easily embedded in the aforementioned protocols. Here, we
have chosen MPQUIC as a basis to evaluate Peekaboo for two
main reasons: (i) QUIC’s development is currently attracting
attention in different communities; (ii) QUIC’s implementation
is in user space, simplifying extension and adoption.

B. The State of the Art Schedulers

A common baseline for multipath scheduler evaluation is
the Round-Robin (RR) scheduler algorithm, which cyclically
transmits packets over each path, as long as there is space in
the Congestion Window (CWND). However, since RR does
not use any characteristics of the paths in the scheduling
decision, it leads to poor performance when the underlying
network paths are heterogeneous [27]. To address this issue,
the minRTT scheduler, the default algorithm in MPTCP [16]
and MPQUIC [14], prioritizes transmission on the path with
the lowest estimated Round Trip Time (RTT) [30], after
checking for space in the CWND. However, minRTT is in
general unable to estimate how many packets should be sent
on each path; simply utilizing all CWNDs and all available
paths [28].

As a further improvement, the Blocking Estimation-based
MPTCP Scheduler (BLEST) algorithm adds such estimation,
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(a) Insight 1: Low dynamicity (b) Insight 1: High dynamicity (c) Insight 2: Medium dynamicity

Figure 2. Illustration of design insights based on 2MB file download completion times, under different dynamicity levels (i.e., loss rates and RTT variations).

introducing a wait mechanism [1]: If the network path with
the highest RTT is the only one available, BLEST can decide
to wait for the lowest RTT path to become available again, if
it predicts that sending on the highest RTT path may block
the receiver. The Earliest Completion First (ECF) algorithm
also applies a similar wait mechanism, but the estimation is
based on decreasing the idle time of the lowest RTT path [2].
Both BLEST and ECF have their merits; however, they fail
to be generically applicable. Recently, RELES [31] has been
proposed using a neural adaptive multipath scheduler based on
deep reinforcement learning. RELES applies Deep Q-Network
(DQN) to teach the multipath scheduler from online data.

To solve the receiver buffer problem [32] in multipath
transport, [30] proposes the Penalisation and Retransmission
(PR) mechanism. [28] derives a rule-of-thumb for buffer size
for MPTCP based on the RTT difference of the paths; and
[29] explores an implementation that could send packets out-
of-order, both with the ambition to overcome head-of-line
(HoL) blocking. These algorithms served as a reference in
[1], where BLEST addresses some simplifications in both
cases, improving the completion times of file downloads and
reducing latency for web transfers and video streaming.

Addressing specific use cases and applications, [33], [34],
[25] apply an adaptive packet duplication mechanism to guar-
antee robustness, which proves to be effective when extra
data usage and battery consumption are not limiting factors.
[35] proposes the Slide Together Multipath Scheduler (STMS)
algorithm to reduce out-of-order packet arrivals and, thus, the
receiver buffer problem. However, the authors do not focus
on application performance. In [36] the authors introduce the
concept of probability in the scheduler combined with Forward
Error Correction (FEC). More recently, [37] proposes a loss-
aware scheduler targeting networks with more than 20% loss
rates. Finally, [32] proposes the Short Transfer Time First
(STTF) scheduler. However, it specifically targets low-latency
for short transfers, and it explores interactions with TCP
specific aspects such as TCP Small Queues (TSQ).

Considering the use case tackled in this paper, i.e., multipath
transmission with heterogeneous networks, we consider RR,
minRTT, BLEST, and ECF as the closest relevant state-of-the-
art schedulers to motivate Peekaboo’s design and evaluation
in the rest of the paper. Although RELES is the closest work
to Peekaboo, the authors do not provide open source code of
their implementation and we could not obtain the code from

the authors either. Further, the paper does not offer sufficient
information for us to reproduce the work. It is, therefore, not
possible to compare Peekaboo against it.

C. Key Design Insights of Peekaboo

Insight 1: A multipath scheduler should employ an adaptive
scheme that takes into account both the current network path
characteristics and their dynamicity levels.

In order to illustrate how path dynamicity affects the per-
formance of state-of-the-art multipath schedulers, we conduct
a preliminary set of experiments and analyze the results.
In our experiments, we choose bandwidth and RTT delay
characteristics of the paths to quantify their heterogeneity.
While Path 1 mimics a slower link with 2Mbps bandwidth
and RTT of 200ms, Path 2 mimics a faster link with 50Mbps
bandwidth and RTT of 40ms. Our experimental setup is further
detailed in §IV-A. We further define three levels of path
dynamicity, and specify the dynamicity range to show how
paths change. For example, while Low dynamicity refers to
very stable channel conditions with 0% random packet loss
and 0% delay variation, Medium dynamicity refers to low
variations in the channel with 1, 5% random packet loss and
8% delay variation and finally High dynamicity refers to
significant variations in the channel with 3% random packet
loss and 16% delay variation. The loss rate in High dynamicity
is chosen based on the real world measurement study of a
nation wide campaign [3]. However, the same study, or any
other study we have found in the literature, does not provide
path RTT variation. We thus choose the parameters based
on our real world measurement as reported in §V. In order
to evaluate if any multipath scheduler can consistently offer
superior performance compared to other algorithms in different
scenarios, we fix the dynamicity level of Path 1 to Medium
while switching dynamicity levels for Path 2 between Low
and High. Given a dynamicity scenario, the download time of
a 2 MB data chunk is evaluated for each multipath scheduler.
To make the experiments statistically relevant, each scheduler
repeats such downloads 100 times.

As shown in Figure 2(a)-2(b), the dynamicity level of Path
2 significantly impacts the performance of the schedulers,
and the best performing scheduler is different for Low and
High dynamicity levels. When the dynamicity level is low,
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BLEST and ECF easily outperform RR and minRTT, since
they favor the use of the faster path (i.e., they favor packets
to be transmitted on Path 2). However, when the dynamicity
level is high, minRTT becomes the best choice, since BLEST
and ECF overuse the lossy and delay varying Path 2.

Our evaluation of the state-of-the art schedulers shows
that, given different dynamicity levels, none of the existing
solutions consistently outperforms the others. Considering that
the conditions of a network path (i.e., the dynamicity of the
path) often vary over time, especially in wireless scenarios,
we need a multipath scheduler that can adapt to the changing
network conditions. To illustrate the potential gains when
embedding a simple adaptive scheme in a scheduling policy,
we leverage a simple concept referred to as Best State of
the Art (BSoA). Given a path dynamicity level, BSoA would
select the scheduler that provides the best performance, among
several state-of-the-art schedulers. For example, in Figure 2(a)-
2(b), BSoA will choose ECF and minRTT in the low vs. high
dynamicity scenarios, respectively.

While the idea behind BSoA is simple, we note that it is not
practical. However, also motivated by the potential gains ob-
tained with BSoA, we design Peekaboo, a practical lightweight
adaptive packet scheduler that learns the scheduling decision
to adopt over time based on the current path dynamicity
levels. We describe the online learning approach adopted by
Peekaboo in details in §III-A.

Insight 2: Without an accurate estimate of the characteristics
of the available paths, due to variability and incomplete in-
formation, a multipath scheduler should employ a stochastic
adjustment strategy.

Due to the complex nature of a network, it is virtually
impossible for a multipath scheduler to always have complete
and accurate information about current and imminent path
characteristics. Related to Insight 1, even though an adaptive
model is used, inaccurate information on path characteristics
may lead to a suboptimal scheduling decision. To overcome
such a limitation, we propose a stochastic adjustment strategy
to address possible suboptimal deterministic scheduler deci-
sions. Based on the current conditions, while the original mul-
tipath scheduling algorithms deterministically take an action,
within the stochastic adjustment strategy, we insert a two-
state Markov chain [38] and maintain a nonzero probability
of selecting the action that is discarded during the previous
deterministic decision step.

To illustrate the benefits of a stochastic adjustment strategy,
we conduct preliminary experiments. Given a state-of-the-
art scheduler as a starting point, we assign a probability
value to each possible deterministic decision. Our goal is
to find the probability values that maximize the scheduler
performance (i.e. to minimize the median completion time of
a file download). This is a multivariate optimization problem,
and can be solved via several optimization tools. To this
aim, we use the Particle Swarm Optimization (PSO) [39]
approach to derive the probability values to be associated to
the deterministic decisions of the scheduler. Without loss of
generality, we built the stochastic adjustment on top of the
ECF scheduler as an example and refer to the stochastically

adjusted ECF as ECF-A.
In the experiment, we choose both Path 1 and Path 2

characteristics with a medium dynamicity level. This results
in similar performance between ECF, BLEST, and minRTT,
hence, it allows us to better appreciate the contribution of
the stochastic adjustment applied to ECF. We illustrate the
impact of the stochastic adjustment strategy in Figure 2(c),
where we show that ECF-A outperforms the best state-of-the-
art algorithm by providing a 17% median reduced download
time. We observe that the difference between ECF-A and ECF
is that when the original scheduler takes the action to wait for
the faster path (i.e., Path 2), ECF-A has P1 = 0.73 probability
to wait but also 1−P1 = 0.27 probability to transmit the packet
on the slower path (i.e., Path 1).

Although we show the effectiveness of the stochastic ad-
justment strategy, two open questions still remain: First, we
need to formulate how the stochastic adjustment strategy can
actually improve the performance of a multipath scheduler.
Second, we need to find near-optimal probability values with-
out running computationally-expensive optimizations such as
PSO. We address these questions in §III-B.

III. PEEKABOO DESIGN

Based on the discussions in previous sections, we present
here in detail the design and implementation of Peekaboo.
We first describe Peekaboo’s learning aspects, i.e., the on-
line learning of a deterministic scheduling decision and the
stochastic adjustment strategy. Then, we also depict how these
aspects are combined and deployed in the Peekaboo algorithm.
As shown in Figure 3, the Peekaboo workflow consists of two
self-contained stages:
• Learning stage (§III-A–§III-B): at this stage, given the

dynamicity level of the available paths, the deterministic
scheduling policy is derived via online learning, possibly
followed by a stochastic adjustment strategy. It is worth
noting that this stage is inherently on the fly, using the
normal data that is transmitted for learning.

• Deployment stage (§III-C): at this stage, Peekaboo de-
ploys and realizes the policy derived in the previous stage,
and periodically checks if the path characteristics are
significantly changing (i.e., whether the change in dynam-
icity is above a pre-defined threshold). If so, Peekaboo
reinitializes the Learning stage in order to adapt the policy
to the new path characteristics and dynamicity levels.

A. Online Learning

In Insight 1 of §II-C, we show that for different dynamicity
scenarios, none of the existing schedulers consistently outper-
form the others, and we thus need a multipath scheduler that
adapts well to the different dynamicity scenarios. In Peekaboo,
we tackle this problem using an online learning based on
contextual MAB theory [13].

In a general contextual MAB problem, a learning agent
observes a d-dimensional vector of features, which represent
the surrounding environment (i.e., the context). The goal of the
agent is to maximize a reward function, which indicates how
well the agent is adapting to the environment by selecting an
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action from the available set. By leveraging the exploration
vs. exploitation dilemma, the agent moves towards a policy
leading to the selection of the best action at each time.

In our multipath scheduling problem, the learning agent is
the scheduler, the action is a scheduling decision, and the
features are the path characteristics. In the following, we first
give more details on actions and features, and then define the
reward function to be maximized. Finally, we describe the
strategy adopted to select the actions at each time.

Actions. The action set depends on the number of paths and
their availability. For simplicity, in this work we assume two
paths (i.e., WiFi and cellular), which is a common configu-
ration in off-the-shelf devices. However, the use of Peekaboo
can be straightforwardly extended to the case of more than two
paths. A path is considered available if there is space left in
its CWND, and for each available path we have two actions:
transmit and wait. For example, if only one path is available,
the action set includes: (i) transmit on that path and (ii) wait
until the other path becomes available again, and if both paths
are available, each action corresponds to the selection of a
path. For managing the actions, two cases can be considered.
In the first case, the scheduler takes over all the actions it can
perform and learns how to maximize its performance. In the
second case, we rely on minRTT when two paths are available
(same as BLEST and ECF), while optimizing the policy when
the scheduler has to decide between waiting for the low latency
path or transmitting on the high latency path.

The objective of action selection is to remove the actions
that do not contribute positively to the learning performance.
We take the action set used in the second case (selected
for Peekaboo) as our baseline and adopt a forward selection
methodology [40]. In forward selection, we test the addition of
each new action on the baseline and select the action that can
give the most significant improvement. The iteration continues
until we cannot significantly improve performance.

We define and evaluate the following additions and their
corresponding actions:

• Addition 1: When both paths are available, the scheduler
learns how to transmit the packet over each path, instead
of transmitting the packet based on the RTT values.

• Addition 2: If the faster path is available and the slower
path is not available, the scheduler could wait for the
slower path and transmit the packet on it.

• Addition 3: The sum of Addition 1 and Addition 2, i.e., the
learning agent learns how to perform all possible actions.

We performed preliminary experiments2 across different
test cases and we observe that none of the Additions brings
performance increases to the baseline. In particular, Addition
2 and Addition 3 perform worse than the baseline across all
test cases. The actions they add do not bring any positive
contributions, but actually complicate the learning due to the
need of exploring across more actions. This also holds for
Addition 1, which however behaves similarly to the baseline
for low dynamicity levels and gets worse when the dynamicity
increases. Based on these observations, we keep the baseline
as the action set in Peekaboo.

Features. We adopt four main parameters to create the features
used to characterize the paths at the transport layer, these
are: CWND, number of Inflight Packets (InP), Send Window
(SWND) (the mirror of receive window at the sender) and
RTT.

As discussed in the next paragraph, we define the reward
as a function of the throughput, and for this reason, we use
the selected parameters for three features with a throughput-
like unit, dividing the first three parameters by the RTT
experienced on the paths. Thus, the feature vector used by
Peekaboo includes CWND/RTT, InP/RTT, and SWND/RTT
values, for both Path 1 and Path 2. Given a time t, in which a
transmit/wait decision has to be taken by Peekaboo, the feature
vector is defined as xt, having dimension d × 1, with d = 6
in our case. Normalizing the CWND, InP and SWND by the
RTT before embedding them in the feature vector provides a
comparable scale and also boosts the learning speed [41].

Reward. The reward evaluates the value of the selected action.
We define the reward, denoted as R, in the throughput unit,
i.e., bytes per millisecond. R is in the form of a discounted
reward [42]: once an action is taken, R takes into account
the throughput obtained over the currently scheduled packet
and the following ones, implying that the action impacts the
experienced performance on both current and future scheduled
packets. R is thus calculated by summing up the instantaneous
reward r for each packet observed within a reference time
interval. Given a packet, r is calculated as the ratio between
its size in bytes and the time elapsed from packet transmission
to Acknowledgement (ACK) reception. A time-decreasing
discount factor γ is used to weight the instantaneous rewards
r so that their contribution to R diminishes over the reference
time interval.

Algorithm 1 shows the details of the calculation of R.
First of all, the reference time interval is defined as 3Tref ,
where Tref approximates the time in which the currently
scheduled packet will be ACK’ed, in case of either transmit or
wait actions being selected. Tref is calculated by considering
the values of RTT and RTT variation on both faster and
slower paths, as captured by the RTTf , RTTs, σf , and σs
parameters [43], respectively (Line 2). We denote the elapsed
time since performing the evaluated action as Telap. As long as
Telap is within 3Tref and new packets are being ACK’ed (Line

2The preliminary results are provided in Peekaboo’s website.
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Algorithm 1 Discounted Reward R
Input:

1) c1, c2, c2: weights for different time slots within 3Tref
1: γ = 1, R = 0
2: Tref = max(2(RTTf + σf), RTTs + σs)
3: while Telap < 3Tref && new ACK do
4: r = PS/(TACK)
5: R = R+ rγ
6: if Telap ≤ Tref then
7: γ = c1γ
8: else if Telap ≤ 2Tref then
9: γ = c2γ

10: else
11: γ = c3γ
12: end if
13: end while

3), R keeps increasing by the value rγ (Lines 4–12), where PS
denotes the packet size in bytes. The value of γ is rearranged
by considering the ACKs of the packets, and how they relate to
the Telap (Lines 5–11). The constants c1, c2, and c3 are selected
so that c3 ≤ c2 ≤ c1. Based on preliminary analysis, we fix
these values to 0.9, 0.7, and 0.5, respectively. We note that
a different setting results in negligible performance changes,
as long as the selected values are appropriately spaced and
ensure a decreasing γ.

On the calculation of r, we note that since each path has
its own packet sequence space in MPQUIC, a later scheduled
packet from the application can be ACK’ed earlier. In this case,
the ACK is not released as a new ACK until all the previous
packets have been ACK’ed, capturing the in-order-delivery of
the packets in the calculation of r and thus R.
Online Learning Strategy. For the online learning strategy,
we need an approach that: (i) converges quickly, to quickly
react to the current path status, and (ii) is computationally
lightweight, so that the operation of the network stack is not
negatively affected. To this end, we adopt the LinUCB algo-
rithm [44] to derive how Peekaboo deterministically selects
between transmit and wait actions. LinUCB adopts a ridge
regression [45] to evaluate the expected reward for a particular
action a at time t, given the feature vector xt. It then applies an
Upper Confidence Bound (UCB) [46] to the estimation before
finally selecting the action that maximizes the estimation at
time t. Adopting ridge regression with no UCB, the expected
reward at time t for applying action a given xt, is:

E[Rt,a|xt] = x>t θa, (1)

where Rt,a represents the reward for the considered action at
time t. Note that in our specific case xt is independent over
the actions, given the above definitions of actions and features.
Moreover, θa is a d×1, action-specific vector, evaluated as
follows [45]:

θa = (D>a Da + Id)
−1D>a ca, (2)

where Da is a m×d matrix containing the history of the
feature vector observed when action a was selected, with m
being the number of times this selection occurred, while ca is

Algorithm 2 Online Learning via LinUCB
Input:

1) A: action set;
2) x: the selected d features
3) α: exploration hyperparameter

1: for all a ∈ A do
2: Aa ← Id (d-dimensional identity matrix)
3: ba ← Od×1 (d-dimensional zero vector)
4: end for
5: while Learning do
6: for t = 1, 2, 3, ... do
7: for all a ∈ A do
8: θa ← A−1a ba

9: E[Rt,a|xt]← x>t θa + α
√
x>t A−1a xt

10: end for
11: at ← argmaxa E[Rt,a|xt]
12: Aat = Aat + xtx

>
t

13: bat = bat +Rt,atxt
14: end for
15: end while
16: return Θ← θa ∀a ∈ A

a m×1 vector with the history of the reward obtained upon
selection of a.

As mentioned before, we want to identify the action maxi-
mizing the E[Rt,a|xt]. However, without sufficient exploration
of each available action, the amount of data used for esti-
mating θa and thus E[Rt,a|xt] is not sufficient. In this case,
the estimation can be inaccurate, thus leading to suboptimal
decisions. For this reason, an UCB is added to Equation (1), so
to introduce the exploration degree of each action and improve
the estimates of θa, leading to the following new formulation
of the expected reward [46]:

E[Rt,a|xt] = x>t θa + α

√
x>t A−1a xt, (3)

where, for the sake of simplicity, Aa = D>a Da + Id. The
α value is the hyperparameter of the LinUCB algorithm, and

α
√
x>t A−1a xt as a whole reflects the importance of exploring

new actions for a higher confidence level of the estimations,
instead of solely using the action resulting in the highest
x>t θa. LinUCB finally chooses the action maximizing the
expected reward, as follows:

at = argmax
a

E[Rt,a|xt]. (4)

The overall approach is presented in Algorithm 2. It should,
however, be noted that we adopt the LinUCB version proposed
in [44], which transforms the matrix multiplication in Equation
(2), so that only a d×d dimensional matrix is buffered in the
computing unit instead of the original m×d matrix. Moreover,
we highlight that the repeated execution of LinUCB during the
Learning stage allows derivation of the vectors θa ∀a ∈ A,
which are then passed as input to the Deployment stage of the
Peekaboo workflow.
α Tuning. α reflects the confidence level of Algorithm 2, and
thus plays a key role. If it is too small, the algorithm does not
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Algorithm 3 α Tuning
1: τ = 0.8, α = 0
2: for n = 1, 2, 3, ... do
3: cand = α+ nτ
4: if scorecand > scoreα then
5: α = cand
6: τ = τ/2
7: else
8: break
9: end if

10: end for
11: while τ > 0.05 do
12: α = argmaxcand∈(α,α−τ,α+τ) scorecand
13: τ = τ/2
14: end while

perform sufficient exploration and may behave suboptimally. If
it is too large, LinUCB might struggle to converge. In order to
understand the impact of α, we run Algorithm 2 using different
α values over different dynamicity levels. We observe that
as dynamicity increases, the optimal α decreases because the
existence of high path dynamicity decreases the estimation
confidence interval, and the mean optimal α is around α = 0.8.
Based on these observations, we develop a tuning algorithm for
α, as described in Algorithm 3, and run it on top of LinUCB
during the Learning stage.

The α Tuning algorithm examines the LinUCB performance
while adopting different values of α. These are latter selected
with a decreasing step size, and for each of them, a score
is recorded. In Algorithm 3, scoreα denotes the optimal
performance obtained during the searching process, while
scorecand records the performance of the current α candidate,
denoted as cand. The score represents, in short, how well
the current policy learned from Algorithm 2 fits with the
current path configuration, while adopting the current cand.
Its formal definition equates to the definition of q̂, as shown
in Algorithm 4 presented later, and for this reason we refer to
§III-B and §III-C for a more refined and complete description.

Algorithm 3 initiates a broad scale search (Lines 2-10),
starting from α = 0 and taking α = 0.8 as a centroid
point, based on our empirical observations. Once the score is
obtained for α = 0, we add a step size of 0.8 and repeat the
comparison of the score by scaling down the step size and until
we cannot gain any performance increase. Then the algorithm
performs a small scale search (Lines 11-14), exploring any two
candidates around the best candidate with half of the current
step size to determine the next best candidate. This can lead
us to the gradient descent [47] trajectory. The iteration stops
when the step size is smaller than 0.05. Note that Algorithm 3
formally searches over a broad range of possible α values.
However, to speed up the tuning process, the algorithm can
directly perform a small scale search around α = 0.8.

B. Stochastic Adjustment Strategy

We show in Insight 2 of §II-C how a stochastic adjustment
strategy can improve the performance of the deterministic
scheduler. In this subsection, we formulate the stochastic

adjustment problem and propose an approach to derive a near-
optimal probability value to use in the adjustment without
running a computationally-expensive optimization algorithm
such as PSO.

Strategy Formulation. The results in §II-C show that it is
not always wise to wait for a faster path when a deterministic
scheduler makes the wait decision. In order to explain this
result, we define two actions, A1 (wait for the faster path)
and A2 (transmit on the slower path), and assume from now
until the end of this subsection that the deterministic scheduler
makes the decision to wait, i.e., always performing A1. On
the other hand, a scheduler with the stochastic adjustment
would instead perform A1 and A2 with certain probabilities.
We define C1 and C2 as two configurations of the path. We
assume that waiting for the faster path (A1) is desirable while
being in C1; therefore, we define the payoff of A1 to be higher
than or equal to the payoff of A2. Oppositely, A2 is desirable
under C2 configuration, and thus we define the payoff of
A2 to be higher than the payoff of A1. The reward defined
in §III-A is the payoff metric, but in order to simplify the
evaluation of the expected payoff of a stochastic strategy, we
consider a no-regret payoff matrix [48], as shown in Table I.
With no-regret payoff, when the stochastic strategy selects
the action matching well with the current configurations, the
payoff will be zero, indicating that there is no deviation from
the optimal action in terms of payoff. Otherwise, the payoff
will be negative. Given this payoff matrix, we also define the
probabilities of performing A1 and A2 as p and 1− p. In the
following, p is also referred to as the stochastic factor. Then,
we also define q as the probability of being in C1. It can be
noted that q reflects how the deterministic scheduler and its
decision (that is to wait in our example) fits with the current
configuration. Similarly, the probability of being in C2 is 1−q.

Table I
NO-REGRET PAYOFF MATRIX.

Configurations
C1 C2

Actions A1 0 −e

A2 −f 0

Given a single decision, the expected payoff of the stochas-
tic strategy can be written as follows:
E[payoff] = (p)(q)(0) + (p)(1− q)(−e) + (1− p)(q)(−f) + (1− p)(1− q)(0)

= (p)(1− q)(−e) + (1− p)(q)(−f).
(5)

Equation (5) shows that if, for example, q = 1, the stochas-
tic strategy has to adopt p = 1 to maximize the expected payoff
(so that the A1-C1 match is always verified), and conversely,
if q = 0, then p = 0 is optimal (so that the A2-C2 match is
always verified). Moreover, when 0 < q < 1, the scheduler
still maximizes its payoff (but to a value < 0), by adopting
p = 0 (if q < 0.5) and p = 1 (if q > 0.5). At q = 0.5,
the expected payoff of the stochastic strategy is the same for
all values of p. For example, if this stochastic adjustment is
applied to ECF, then p = 1 represents a pure ECF scheduling
mechanism, while p = 0 indicates that wait is always avoided,
leading ECF to be reduced to minRTT.
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However, the above description only holds for a single
decision, e.g., over a single packet, since, in the next ones,
the values of e, f, and q are different. Taking into account that
the applications consist of many packets, we focus on long-run
payoffs, with both the current value and overall distribution of
q unknown. Under this assumption, besides the deterministic
strategies (i.e., p = 0, p = 1), another possible approach is
thus to adopt a value of p in between 0 and 1 so that the
observed performance is indifferent to q. Such an indifferent
point, denoted as pindiff , can be derived in two steps. First, we
derive the expected payoffs separately when C1 and C2 are
verified:

{
E[payoff|C1] = (p)(0) + (1− p)(−f) = (1− p)(−f)

E[payoff|C2] = (p)(−e) + (1− p)(0) = (p)(−e)
(6)

Then, the scheduler is indifferent to the environment be-
haviour when E[payoff|C1] = E[payoff|C2], that is, when

p =
f

e + f
. By adopting pindiff =

f

e + f
, the stochastic strategy

also max-min [49] its expected payoff. This can be seen if we
transform Equation (5) as follows:

E[payoff] =
−ef

e + f
+ (e + f)×

(
p− f

e + f

)
×
(
q − e

e + f

)
.

(7)

From Equation (7), we see that the expected payoff is indif-

ferent to q when p = pindiff =
f

e + f
, and this latter provides

the max-min expected payoff.
From the above discussion, we derive that three main

strategies are available for a scheduler embedding a stochastic
adjustment in one of its actions, that is, p = 0, p = 1 or
p = pindiff. However, no single strategy is absolutely dominant
over the other and which strategy is adopted depends on q. In
Figure 6 of §IV, we further elaborate and illustrate the impact
of the stochastic factor on the scheduler performance.

It is worth noting that we present the stochastic strategy
in the particular case when the deterministic action to be
adjusted is to wait (for the faster path to be available), but an
equivalent adjustment can be applied in parallel to the transmit
(on the slower path) action. However, by running several
experiments on different path settings and configurations, we
observe that the adjustment always occurs on a single action at
a time, even though it is concurrently activated on both actions.
This can be explained by considering that the deterministic
algorithm might overestimate one action with respect to the
other, and thus only a single adjustment occurs to balance
the overestimation. However, in order to be general enough
and adapt to all possible scenarios and path configurations,
Peekaboo takes into account the possibility of stochastically
adjusting both actions, as shown in Algorithm 4, as this may
be needed in particular corner scenarios.

Estimation of pindiff and q. The indifferent point is not a-
priori known to the stochastic strategy, and we thus need to
estimate an approximated value. For this reason, we propose
the following procedure. The indifferent point includes the
differences in the rewards observed by performing actions

A1 and A2, i.e., the values e and f. These values cannot be
obtained in parallel since the two actions cannot be performed
at the same time. To solve this, we then look to the history of
the obtained rewards and corresponding feature vectors for the
action not currently selected. We then extract the configuration
having the closest feature vector to the current one, in terms
of Mahalanobis distance [50], and consider the reward that
was observed. This allows us to evaluate the difference with
the current reward and, by averaging over several iterations,
we derive an approximation of the indifferent point, that is,

pindiff =
f

e + f
, where we use sampled average values of e and

f. We show in §IV that this procedure leads to good estimations
of the indifferent points under several path dynamicity levels
and configurations. The same procedure can be applied to
find a heuristic estimate of q. Recall that q represents the
probability that the action selected by the deterministic policy
can offer a higher reward than the other action. By looking
at the history, as done for the estimation of pindiff, we can
also calculate a ratio of the number of times the deterministic
decision offered a higher reward, with respect to the total
number of decisions. In the following, we denote q̂ as the
heuristic estimate of q. Since the stochastic adjustment to adopt
depends on q, we use its estimate q̂ to decide which adjustment
to use, that is, p = 0, 1, or pindiff, as analyzed in the previous
subsection. This aspect is further discussed in the next section,
when the overall Peekaboo workflow is described.

C. Overall Peekaboo Algorithm

In §III-A and §III-B, we show how to capitalize on the two
key design insights presented in §II. We now combine these
two mechanisms and present Peekaboo as a whole as shown
in Algorithm 4.

In the Learning Stage of Peekaboo, we first run the
p = 0 deterministic strategy for both adjustment actions, i.e.,
minRTT and always wait for the fast path (i.e., only use
the fast path and wait if it is not available), and obtain h
for both strategies, representing the history of rewards and
features for both cases. Note that we use the subscripts tx
and wt throughout Algorithm 4 to identify these two cases.
We then run the deterministic online learning scheduler based
on Algorithm 2 in §III-A, along with the α tuning process
shown in Algorithm 3. This latter takes the histories as input
to evaluate the scores (i.e., the value of q̂ for both examined
actions). This step finally returns Θ, representing the learning
outcome, and final scores q̂ for each evaluated action. Then,
we use Θ and the histories to estimate pindiff for both actions,
based on the approach described in §III-B. These values are
used to choose the stochastic adjustment strategy to adopt on
top of Θ (Lines 5–18). If q̂ is close to 1 (i.e., q̂ is larger
than the boundary BD1), we behave almost deterministically
by letting p = 0.9. Similarly, if q̂ is close to 0, we choose
p = 0.1. The reason to keep some randomicity is that we still
want to have a stochastic behavior to be able to estimate q̂
periodically in the deployment stage. If q̂ does fall in between
the boundaries BD1 and BD0, we use p = pindiff. We set BD1

and BD0 to 70% and 30%, respectively, based on our extensive
empirical observations.
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Algorithm 4 Peekaboo
Input:

1) BD0,BD1: dominant boundaries of the deterministic
strategy, i.e., (pwt,tx = 0, 1);
2) q̂th: threshold to detect the change of q̂;

Learning:
1: hpwt=0 = Run&Record (); \\ i.e., minRTT, probabil-

ity to wait is 0
2: hptx=0 = Run&Record (); \\ i.e., only use the faster

path and always wait for it, probability to transmit is 0
3: Θ, q̂wt, q̂tx = Run&Learn (hpwt=0, hptx=0)
4: pindif,wt, pindif,tx = Est (Θ, hpwt=0, hptx=0);
5: if q̂wt > BD1 then
6: pwt = 0.9;
7: else if q̂wt < BD0 then
8: pwt = 0.1;
9: else

10: pwt = pindif,wt;
11: end if
12: if q̂tx > BD1 then
13: ptx = 0.9;
14: else if q̂tx < BD0 then
15: ptx = 0.1;
16: else
17: ptx = pindif,tx;
18: end if
19: goto(Deployment);
Deployment:
20: while True do
21: q̂deploy,wt, q̂deploy,tx = Deploy&Est(Θ, pwt, ptx);
22: if |q̂deploy,wt − q̂wt| > q̂th then
23: goto(Learning);
24: end if
25: if |q̂deploy,tx − q̂tx| > q̂th then
26: goto(Learning);
27: end if
28: end while

MPQUIC
Client

MPQUIC
Server

RouterPath 2

Path 1

Figure 4. Multipath topology used in the experiments.

After the learning stage, we have Θ, the needed input for the
deterministic decision; we have p, the value of the stochastic
factor; and we have q̂, the value which indicates how well Θ
fits in the current dynamicity. We then go to the Deployment
Stage where we deploy the scheduler based on Θ and p.
Meanwhile, we estimate q̂deploy along with deployment. If,
after a certain period of time, we find the difference of q̂deploy
and q̂ is larger than the threshold we define, q̂th, then we
assume the current dynamicity does not match with the Θ
and p obtained during learning. We will then re-enter into the
learning stage to estimate new values for Θ and p. Based on
preliminary experiments, we found q̂th=17.5% to be a suitable
threshold.

Table II
EMULATION PARAMETERS. PATH 2 IS CONFIGURED AT THREE
DYNAMICITY LEVELS (E.G. LOW, MEDIUM AND HIGH), AND
PATH 1 IS ALWAYS KEPT FIXED AT A MEDIUM DYNAMICITY

LEVEL.

Parameter Dynamicity Level
Path 1 Path 2

Medium Low Medium High
Bandwidth [Mbps] 2 50 50 50

One-way Delay [ms] 100 20 20 20
RTT Variation [%] 8 0 8 16
Random Loss [%] 1.5 0 1.5 3

IV. EVALUATION IN THE EMULATION

In this section, we evaluate the performance of Peekaboo in
an emulated environment. This lets us assess the performance
of the proposed algorithm with a wide range of network
configurations. We present the experimental setup in §IV-A.
The impact of online learning and the stochastic strategy are
evaluated in §IV-B and §IV-C, respectively. Peekaboo as a
whole is evaluated in §IV-D for two different applications,
and the adaptivity of Peekaboo is discussed in §IV-E. Finally,
Peekaboo is also examined in §IV-F within the whole design
space composed of different path characteristics, from the
heterogeneous to the homogeneous case.

A. Experimental Setup

We use Mininet [51] as the emulation environment, since
it can emulate a real network stack using Linux containers
avoiding simplifications of simulation models. We employ
the topology shown in Figure 4. This topology has two
network interfaces to the client and one to the server over two
partially disjoint paths, i.e., Path 1 and Path 2. Each path is
characterized by its bandwidth, One-Way Delay (OWD), RTT
variation, and random loss. We use the Linux traffic control
tool NetEM [52] to control these parameters and configure the
characteristics of the paths. We generate multiple configura-
tions to evaluate Peekaboo’s performance with respect to other
schedulers. To ensure statistical significant results, for each
path configuration, we run 120 repetitions for each scheduler.

We consider two different applications in our evaluation:
file download and real time streaming. For file downloads,
we evaluate the download completion times. Inspired by [36],
we also consider real-time streaming, where the application
regularly sends equally spaced messages. The application has
a deadline for the messages, and we evaluate the percentage
of messages that arrive before the deadline and the delay of
these late messages that arrive after the deadline. For example,
to mimic real-time streaming with a bitrate of 2 Mbps, we
regularly send messages composed of 8 QUIC packets of
1000 bytes. Each message is spaced by 33 milliseconds. We
also assume the deadline is equal to the spacing, which is 33
milliseconds [36].

B. The Impact of Online Learning

We first investigate the performance gains of using a solely
deterministic online learning scheduler over the state-of-the-
art schedulers. Our goal here is to illustrate how and at
which dynamicity levels the sole use of online learning can
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(a) Performance under different loss rates (b) Performance under different RTT variations

Figure 5. Deterministic online learning based approach evaluation. The download completion times of a 2MB file under different Loss and RTT variations.
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Figure 6. Stochastic adjustment strategy evaluation. The download completion
times of a 2MB file under different loss and RTT variations for various
stochastic factors. The cross symbol on each curve represents our estimated
optimal stochastic factor for each path dynamicity level.

provide performance gains. We use the same setting shown in
Table II, except that we change the loss rate and RTT variation
parameters of Path 2 for different levels of dynamicity. We
illustrate the results for file downloads in Figure 5 where in
Figure 5(a), we keep the RTT variation rate as 0.0% and vary
the random loss rate from 0.0% to 3.0% with a granularity of
0.5% while in Figure 5(b), we keep the random loss rate as
0.0% and vary the RTT variation from 0.0% to 16% with a
granularity of 4%.

In Figure 5(a), we observe that the deterministic online
learning, denoted as LinUCB, outperforms the state-of-the-
art schedulers when the random loss rate is between 0.0% and
1.5%. For example, for the 1.0% random loss case, we achieve
up to 28% shorter download completion time. However, when
the random loss rate is in the range of 2.0% to 3.0%, the
performance benefits are not as significant, with minRTT
outperforming LinUCB when the random loss rate is 3.0%. We
observe a similar trend in Figure 5(b). When the RTT variation
is between 0.0% and 8.0%, online learning outperforms the
state-of-the-art. However, when the RTT variation rate is in
the range of 12.0% to 16.0%, the performance benefit is
not significant. Similarly, minRTT outperforms online learning
when the RTT variation rate is 16.0%.

In summary, we observe that the performance benefit from
sole deterministic online learning depends on the path dy-
namicity. While deterministic online learning alone provides
performance gains when the path dynamicity is low, for high
dynamicity, we choose to incorporate the stochastic adjustment
strategy.

C. The Impact of Stochastic Strategy

We now explore the performance of the stochastic adjust-
ment strategy. We use the same path characteristics from
§IV-B, and choose the stochastic factor, p, between 0 and
1 with steps of 0.1, showing its impact on the download
completion time.

We illustrate the impact of the stochastic factor in Figure 6
for LinUCB. Each curve shown in Figure 6 operates under one
specific path dynamicity level from §IV-B. The cross symbol
on each curve represents our estimated optimal stochastic
factor for each path dynamicity level. We observe similar
results for BLEST and ECF, and due to space limitations, those
results are not presented. We observe that the performance as
a function of the stochastic factor highly depends on the path
dynamicity. For example, when the dynamicity level is low
(i.e., relatively low loss and RTT variation rate), we observe
that the stochastic factor of 1 offers the best performance.
However, as we increase the dynamicity levels, the stochastic
factor that offers the best performance varies, and the value
generally decreases. When the dynamicity level is the highest,
the stochastic factor of 0 offers the best performance. This
trend also matches our analysis in §III-B. In summary, depend-
ing on how the deterministic scheduler fits into the dynamicity
level of the path (i.e., q in Equation (7)), one of the strategies
among p = 0, p = 1 and p = pindiff outperforms the others.
Examining our estimated optimal value of p on each graph
(i.e., the cross symbol on each curve), we see that although
the estimation error exists, it does not result in any significant
performance penalty.

In summary, we observe that the proposed stochastic ad-
justment strategy provides performance gains, especially for
medium to high dynamicity. Therefore, online learning and
the stochastic adjustment strategies complement each other.

D. Performance of Peekaboo as a Whole

Next, we evaluate Peekaboo in a wider range of configu-
rations to show the effectiveness of Peekaboo under different
settings. To achieve this, we adopt the experimental design
principle, WSP (Wooton, Sergent, Phan-Tan-Luu) algorithm,
to distribute the design parameters equally across the experi-
ments, based on uniform random sampling of the input design
parameters [53]. We use bandwidth, OWD, RTT variation, and
random loss rate as parameters. As presented in Table III, we
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Figure 7. File download performance of Peekaboo and other schedulers.

Table III
THE RANGE OF PARAMETERS REFLECTING PATH

HETEROGENEITY IN TERMS OF BANDWIDTH, DELAY AND
DIFFERENT DYNAMICITY LEVELS.

Path Bandwidth OWD RTT variation Loss
1 2-10Mbps 80-100ms 0-16% 0-3%
2 40-50Mbps 20-30ms 0-16% 0-3%

select the range of these parameters in such a way that the
two paths are heterogeneous in terms of bandwidth and delay,
and furthermore the paths can have different dynamicity levels.
Compared to Table II, Table III extends the coverage range of
bandwidth and OWD for both Path 1 and Path 2, allowing
us to evaluate the performance of Peekaboo over different
heterogeneity levels. We use WSP to generate 100 distinct
path configurations based on Table III and we evaluate two
applications, i.e., file download and real-time streaming.
File Download. We evaluate Peekaboo’s performance com-
pared to other schedulers in Figure 7. We first illustrate the
median file download completion times for different sched-
ulers in Figure 7(a). Here, for each path configuration, we first
take the median values of completion time over the repetitions,
and then plot them over different path settings. We observe
that Peekaboo outperforms all the state-of-the-art schedulers.
Next, we compute the Empirical Cumulative Distribution
Function (ECDF) of the performance improvement percentage
of Peekaboo compared to the other schedulers across different
path configurations and illustrate the results in Figure 7(b).
We observe that compared to ECF, Peekaboo can achieve
up to 30% shorter download completion times for certain
path configurations. And we observe that those certain path
configurations are mostly of low dynamicity levels, where the
deterministic learning part of Peekaboo can provide the most
benefit. Further, the gains are over 20% for more than 50% of
the path configurations.

Real Time Streaming. We evaluate Peekaboo’s performance
for real-time streaming with two different bitrates: 1 Mbps and
2 Mbps. For each path configuration and bitrate, we stream
20 MB of data for each scheduler and the results are shown
in Figure 8. We plot the ECDF of the application delay
for all the messages. As mentioned earlier, if the message
arrives before the deadline, the application delay is 0 ms. We
observe that Peekaboo in total achieves 10.6% and 16.1%
higher percentages for the messages that arrive before their
deadline, compared with the best state-of-the-art scheduler at
1 Mbps and 2 Mbps, respectively. This is because Peekaboo
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(a) 1 Mbps streaming bitrate
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Figure 8. Performance of the real-time streaming application: The ECDF of
the application delay for the messages.
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Figure 9. Adaptivity test in heterogeneous network.

utilizes the discounted reward to quantify the impact between
different packets. It penalizes the case where the current packet
may delay the receipt of future packets. Besides that, we also
observe that for the packets that missed the deadline, Peekaboo
provides shorter delays.

E. Peekaboo’s Adaptivity

We examine now Peekaboo’s adaptivity under changing
bandwidth, OWD, and dynamicity levels. The goal of the
adaptivity test is to show that Peekaboo is capable of learning
the changing environment and adapt accordingly. To stress test
Peekaboo, we examine a network where bandwidth, OWD,
RTT variation and random loss rates change every 60 seconds
for 3000 seconds. Changes are random within the values
shown in Table III.

In Figure 9, we illustrate the median file download com-
pletion times of different schedulers and the percentage gain
Peekaboo provides over the other schedulers. As depicted in
Figure 9(b), we achieve up to 26.4% shorter median comple-
tion times than ECF. We can see that the performance gains
over the state-of-the-art schedulers is slightly less as compared
to Figure 7. This is because, with rapid changes in network
characteristics, Peekaboo needs to adapt regularly resulting in
a learning overhead. We allocate 4 MB learning overhead in
each learning round, which is equivalent to 4-8 seconds in the
emulated networks depending on the path characteristics, and
0.5-1.4 seconds in real networks as shown in §V. We exploit
this emulated scenario to mimic the case of a relatively static
user connected to a network where the network characteristics
change over time. However, for a mobile user [54], the
changing speed of the networks can surpass the learning speed
achieved through the online learning. This is further discussed
in §VI.
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(a) Performance ratio over the whole
design space

(b) Medium Low over ECF (c) Medium Medium over ECF (d) Medium High over minRTT

Figure 10. Design space exploration of Peekaboo. The bandwidth and OWD of Path 2 are fixed to 50 Mbps and 20 ms and varied between 2 Mbps-50 Mbps
and 20 ms-100 ms in Path 1. For subfigures (b), (c) and (d), the bluer the point is, the higher is the gain of Peekaboo over ECF.

F. Peekaboo’s Design Space Exploration

Peekaboo is designed for heterogeneous scenarios. In a
heterogeneous network, the action to wait for the other path
takes effect due to the difference in path characteristics. The
difference, however, does not hold in a homogeneous scenario.
Thus, it is necessary to show Peekaboo’s performance across
the whole design space composed of different path character-
istics, from the heterogeneous to the homogeneous case. We
perform the following design space exploration to verify it.

We fix the bandwidth and OWD of Path 2 as 50 Mbps
and 20 ms, respectively. We assume both Path 2 and Path
1 can have 3 different dynamicityclasses: Low, medium and
high, as also shown in Table II. In total, Path 2 and Path 1
give 9 different combinations of path dynamicity. For each
dynamicity, we vary the bandwidth and OWD of Path 1 in
the range of 2 Mbps-50 Mbps and 20 ms-100 ms, respectively.
For each path configuration, we perform file downloads and
collect the median completion times shown in Figure 10.

Figure 10(a) illustrates the ECDF of the performance ra-
tio of Peekaboo compared to the other schedulers across
different path configurations. As depicted in Figure 10(a),
Peekaboo performs better than BLEST, ECF, and RR in around
80% of the whole design space, and better than minRTT in
around 60% of the whole design space with more than 50%
performance improvement for some path configurations. As
an example, this can be visualized in the cases shown in
Figures 10(b), 10(c) and 10(d), where the dynamicity of Path 1
is at medium level and the dynamicity of Path 2 increases from
low to high level. Further, for each dynamicity combination,
we show the relative performance ratio of Peekaboo over the
state of the art scheduler that shows the overall best perfor-
mance. In the first two cases, BLEST and ECF show similar
performance. We thus compare with ECF. In the third case, we
compare with minRTT. As shown in Figures 10(b) and 10(c),
Peekaboo outperforms ECF especially in heterogeneous path
configurations. Although experimental randomness exist, this
can be visualized as the appearance of relative stronger blue
points in the lower right corner of the figures. This is because
the action set of Peekaboo is designed for the heterogeneous
case. Moreover, from Figure 10(b) to Figure 10(c), we see a
decrease of stronger blue points. This is because, in the case
of Figure 10(b), the dynamicty level is relatively lower and the
deterministic learning algorithm can make more contribution.
With the dynamicity increase, although the stochastic strategy
can aid the deterministic learning algorithm to maintain the

performance aggregation, the overall accuracy of the algorithm
decreases. Further, in Figure 10(d), Peekaboo converges back
to the same policy of minRTT in the heterogeneous case due
to the high dynamicity. As a result, they perform similarly
(i.e., the points are in the 0.9-1.1 range), which maps to
our earlier analysis. This also holds for the other relatively
homogeneous points in Figure 10(d). We can also observe
the similar performance of ECF and Peekaboo for the points
which are in the 0.9-1.1 range in Figures 10(b) and 10(c). This
occurs when the path characteristics become homogeneous and
both schedulers adopt the minRTT policy. Overall, we see that
Peekaboo performs better than or similar to the best state-
of-the-art scheduler across the examined design space. With
the concept of Peekaboo, it is also possible to further push
its performance aggregation over the other schedulers when
the heterogeneous degree of the network is not significant, by
adding new actions in the learning process. We come back to
this in §VI when discussing limitations and future work.

V. EVALUATION IN THE WILD

So far, we examined Peekaboo’s performance via emulation
experiments. Now, we evaluate Peekaboo in real networks with
file downloads and real-time streaming applications.

A. Experimental Setup

We deploy an MPQUIC server in a European capital, and
the MPQUIC client is locally on a laptop in the same city. The
client communicates with the server over the Internet, using
both a WiFi access point and an LTE network.

During the experiments, we keep the LTE network provider
fixed and test over both a private and a public WiFi
(Eduroam [55]). We consider five different scenarios. The first
one is a residence, where we use private WiFi. The second and
third scenarios are at one of the universities in the city, where
we test with Eduroam both in the library and office. The fourth
and fifth scenarios are at another university in the city, where
we also test with Eduroam both in the library and office. We
report the dynamicity level of the WiFi and LTE paths of each
scenario in Table IV.

B. Experimental Results

File Download. We first investigate the distribution of file
download completion times using Peekaboo and state-of-the-
art schedulers. Here, we download files of different sizes, i.e.,
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(a) 512 KB File (b) 2 MB File (c) 4 MB File

Figure 11. File download completion times for different file sizes at different scenarios.
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Figure 12. Real-time streaming at 2 Mbps at different scenarios.

Table IV
MEDIAN RTT VARIATION AND LOSS RATE OF REAL WORLD

SCENARIOS.

Scenario WiFi
RTT variation

WiFi
loss

LTE
RTT variation

LTE
loss

Residence 8.8% 0.02% 9.7% 0.03%
Library 1 15.8% 0.41% 11.2% 0.19%
Office 1 9.8% 0.21% 10.6% 0.02%

Library 2 14.7% 0.40% 11.7% 0.08%
Office 2 10.3% 0.19% 12.3% 0.14%

256KB, 512KB, 2MB, and 4MB, repeating the experiment
120 times for each scheduler at each file size. We present the
results of 512KB, 2MB, and 4MB in Figure 11, and omit the
result of 256KB due to similarity with the 512KB case. As
shown, we observe that Peekaboo can reduce file download
completion times, which can reach up to 36.3% in the 4MB
file download case at the Residence scenario, compared to the
best state-of-the-art scheduler. However, we also observe the
performance of Peekaboo is only slightly better than minRTT
at Library 1 and 2 when, e.g., downloading the 2MB file. This
is because Peekaboo can adapt to the policy of minRTT in that
scenario when detecting the high dynamicity.

Real-Time Streaming. We explore Peekaboo’s performance
and state-of-the-art schedulers with real-time streaming at 2
Mbps as defined in §IV-A. We observe that Peekaboo can
always guarantee more messages arriving before the deadline
at different scenarios. This is because Peekaboo essentially sets
the function of packet delay as its reward and the real-time
streaming scenario has a higher requirement on packet delay
compared to the file download. We only report scenarios of
Residence, Library 1 and Office 1 in Figure 12, as the results
of Library 2 and Office 2 are similar to Library 1 and Office 1.
As shown, Peekaboo achieves up to 15.1% higher percentage
for messages that arrive before the deadlines compared with

the best state-of-the-art scheduler, in Figure 12(b).
Our real world evaluation confirms that Peekaboo outper-

forms the state-of-the-art schedulers in operational networks
with real dynamic path characteristics.

C. Runtime Overhead

Peekaboo incurs negligible runtime overhead, as both learn-
ing and scheduling algorithm phases have low complexity. We
profiled Peekaboo’s CPU and memory utilization comparing
it to the other schedulers, without noticing significant penalty
in CPU and memory usage.

VI. LIMITATIONS

Peekaboo is an online learning multipath scheduler, i.e.,
both the training and deployment of the training outcome are
conducted online. Although Peekaboo adopts the light weight
learning approach, this still can be a limiting factor when it
comes to the scenarios in which Peekaboo is applicable. For
example, in mobility scenarios the speed at which the network
changes can surpass the learning speed achieved through
online learning. This can be even more difficult when there is
not enough traffic for Peekaboo to learn the mobility scenario.
To make Peekaboo also perform well in such scenarios, it
is possible to incorporate offline learning that learns from
sufficient offline traffic to make adaptation proactively. In
other words, the offline learning performs the training offline
and deploy the training outcome as it is. Offline learning
predictions can be both explicit like regression or implicit like
the assumed state transition in a Markov Decision Process
used for calculating the accumulated reward. The downside of
offline learning is that once the offline traffic used for learning
deviates from the current online traffic, it will lack a new
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learning outcome due to the amount of data required and the
convergence time. While each approach has its merits, we plan
to take the cooperation of both online learning and offline
learning into account as our future work.

Furthermore, we expect there to be a significant number
of vertical applications in the upcoming 5G era, where the
exploited action and reward in this work (i.e., mainly targeting
at heterogeneous networks and existing applications) will
need to be extended in order to support a wide range of
applications, as well as link characteristics. For example, when
interfacing with tactile Internet applications [56], the hard
real-time performance should be guaranteed. In that case,
robustness is more important than extra data and battery usage.
Thus, the action set can have redundancy characteristics, e.g.,
packet duplication or FEC [57], etc. The reward should also
be modified so that it can be mathematically proven to have a
delay bound. Moreover, Peekaboo currently does not explore
stream prioritization capabilities in MPQUIC, a feature that
has been shown to improve performance [58]. We plan to
extend the work in this direction and with multi-streaming.

VII. CONCLUSION

In this paper, we consider the multipath scheduling problem
when the paths are heterogeneous with dynamically changing
path characteristics. To address this problem, we propose
Peekaboo, an adaptive multipath scheduler that leverages an
online learning mechanism in combination with a stochastic
adjustment strategy to adapt to the dynamic characteristics of
the paths. Peekaboo is computationally lightweight and easily
deployable. We implement Peekaboo in MPQUIC and com-
pare its performance with state-of-the-art multipath schedulers
for a wide range of dynamicity levels, using both emulated
networks and real network scenarios. Across the examined sce-
narios and applications, Peekaboo consistently offers superior
or similar performance to the best state of the art schedulers,
with the performance improvements of Peekaboo reaching by
up to 31.2% in emulated networks and up to 36.3% in real
network scenarios.
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