
 

A metaheuristic approach for minimizing service 

creation time in slice-enabled networks 

Anastasios-Stavros Charismiadis×, Dimitris Tsolkas× +, Nikos Passas× and Lazaros Merakos× 

×National and Kapodistrian University of Athens, Department of Informatics & Telecommunications 

Panepistimiopolis, Ilissia, 15784, Athens, Greece 

{anachar, dtsolkas, passas, merakos}@di.uoa.gr  

+Fogus Innovations & Services P.C.,  

Michali Karaoli 51-53, 16121, Kaisariani, Greece 

dtsolkas@fogus.gr  

Abstract— A fundamental technology towards the next 

generation of mobile networks is the Network Slicing, i.e., the 

capability to “slice” network resources and functions and to 

offer isolated end-to-end network services over shared physical 

infrastructures. From the performance perspective, one of the 

main challenges in network slicing is the minimisation of the 

slice set up time; a factor that directly effects a key performance 

indicator for the 5G networks, namely, the service creation time. 

Treating a network slice as a set of Virtual Network Functions 

(VNFs) that are installed in different hosts (central/edge clouds) 

during the slice creation procedure, we examine a nature-

inspired metaheuristic approach for scheduling the VNFs 

installation process. Simulation results prove that the proposed 

metaheuristic method can offer high quality solutions for VNF 

scheduling problems and optimize service creation time for a set 

of requested network slices, by producing a close-to-optimal 

scheduling plan, for a large set of VNFs, in reasonable execution 

time. 

Keywords—5G, KPI, service creation time, network slicing, 

VNF, job-shop scheduling problem, meta-heuristics, genetic 

algorithm 

I. INTRODUCTION 

The era of fifth generation (5G) networks has already 
emerged worldwide. The 5G architectural and technical 
specifications bring a radical change in the way 
telecommunication systems are built. A paradigm shift is 
observed where the conventional isolated hardware-based 
approach is replaced by a flexible software-based one. 
Inevitably, a critical factor in this shift is the introduction of 
the network slicing concept [1]. Network slicing is one of the 
core mechanisms in 5G networks that allows for the 
instantiation of multiple virtual networks over shared physical 
infrastructures.  

Key role in the realisation of network slicing plays the 
Network Function Virtualization (NFV) technology. NFV is 
about decoupling network functions from dedicated hardware 
and hosting them in virtual machines. Practically, it refers to 
the transformation of the conventional Physical Network 
Functions (PNF), that reside at the core and access domains of 
a mobile network, to Virtual Network Functions (VNF).  

Considering network slices as set of VNFs, hosted on 
several virtual servers of provider’s network, many 
challenging research aspects arise. The major one is how 
resources, of whatever kind (compute, network, storage etc.), 
are allocated efficiently to fulfil the functional and 
performance requirements of the network slices. Reasonably, 
the challenge is becoming critical when the resources are in 
scarcity (e.g., in scenarios where edge network nodes are 
used) and when network providers/operators are called to 
serve simultaneously multiple and heterogeneous requests for 
network slice set up.  

One metric for assessing the efficiency of the resource 
management in this context, is a well-known 5G Key 
Performance Indicator (KPI), called service creation time [2]. 
Service creation time describes the time needed so as a 
network service at the “zero” status becomes fully functional. 
This value is composed of various time-consuming 
procedures during the service creation, including the slice set 
up process.  

We focus here on the procedure of instantiation and 
configuration of VNFs which is the major operation in the 
slice set up process. The problem of minimizing the time 
needed for instantiation and configuration of VNFs, is mapped 
to the Job Shop Scheduling Problem (JSSP), where each VNF 
is matched to an operation of a job. With this mapping, the 
target minimisation problem is translated to the minimisation 
of the runtime for all the jobs’ operations defined in the 
mapped JSSP [3].  

To resolve the above-mentioned problem (i.e., scheduling 
the VNFs instantiation and configuration procedure), a 
specific category of optimisation algorithms is examined, 
named metaheuristics. More precisely, we consider a system 
that receives requests for setting up network slices and 
provides a scheduling decision based on a nature-inspired 
metaheuristic approach by using genetic evolution 
characteristics. 

In order to evaluate the performance of the above-
mentioned algorithm, we performed simulations using well 
validated open datasets for the JSSP.  From the evaluation 
process it became apparent that metaheuristic approaches can 
address efficiently the slice set up requirements of a 5G 
system and perform well in terms of service creation time. 

The remaining of the paper is organized as follows. 
Section II contains a brief presentation on network slicing 
concept and a definition of the service creation time KPI. In 
section III, the adopted system model is presented, explaining 
how the target minimisation problem is mapped to the well-
known JSSP. Next, section IV contains the proposed 
metaheuristic algorithm. Finally, in section VI, conclusions 
and insights for further study are provided. 

II. NETWORK SLICING 

A. The concept of network slicing 

The high-performance standards and the heterogeneous 
requirements that are set by emerging vertical services (e.g. 
Internet-of-Things, automotive communication), cannot be 
satisfied by the conventional/monolithic network 
deployments. As a countermeasure, network slicing is the 
main pillar in the new generation of mobile networks that will 
enable innovative vertical services. Network slicing refers to 
the process of setting up on demand various end-to-end logical 



networks, that: i) run on a common underlying (physical or 
virtual) network, ii) are mutually isolated, and iii) can have 
independent control and management [4]. 

The implementation of the network slicing concept is 
based on two key technologies, namely, the Software Defined 
Networks (SDN) and the NFV. On the one hand, SDN concept 
enables the decoupling between software and hardware in the 
network, thus it gives the opportunity to dynamically create 
and configure networks through software. On the other hand, 
NFV enables the virtualization of physical network functions 
such as firewall, encryption, routing etc., separating them 
from dedicated hardware and moving them as software to 
virtual or physical servers (transforms the network functions 
to VNFs). Consequently, a network slice can be considered as 
a set of VNFs that are hosted in compute nodes of a network 
infrastructure owner and offer an isolated and scalable virtual 
network to vertical service providers. 

B. Service creation time 

The organizations responsible for 5G standardization and 
development have set their goals concerning the 5G 
performance by providing a set of target values for major 
technical specifications or KPIs. According to the technical 
annex of the 5G PPP contractual arrangement [5], one of the 
target KPIs is the so called “Reducing the average service 
creation time cycle from 90 hours to 90 minutes”. Service 
creation time is defined as “Time required to provision a 
service, measured since a new service deployment is 
requested until the overall orchestration system provides a 
response” [2].   

Service creation time can be divided into many time-
consuming phases, each of them depending on different 
parameters. In the attempt to identify the various phases of 
service creation, 5G-PPP Phase II projects have reported a 
collaborative reference timing flow. This timing flow does not 
only separate the stages in network service creation and 
activation process, but also defines clear starting and ending 
time points. A summarized version of the timing flow is 
presented in TABLE I. We focus on the second phase, listed 
in TABLE I, i.e., the time required for the network slice to be 
created, named as “Instantiate, Configure & Activate”. More 
specifically, we focus on optimizing the time for the 
instantiation and configuration of a network slice, by trying to 
find the optimal scheduling for setting-up VNFs in service 
chain. 

TABLE I.  SERVICE CREATION &ACTIVATION TIME 

Creation & Activation Time 

Phase Name Description 

Phase 0 Platform 
Provision 

Platform configuration, Platform 
deployment 

Phase 1 Onboarding Onboard Network Slice Template, 
Network Slice Descriptor etc. 

Phase 2 Instantiate, 
Configure & 
Activate 

Instantiate Network Slice, Instantiate 
& Activate Network Service, 
Instantiate & Configure VNFs in 
service chain etc. 

Phase 3 Modify Modify Slice, Service or VNF 
configuration 

Phase 4 Terminate Terminate Slice, Service, VNF 

III. SYSTEM MODEL 

Let a 5G infrastructure manager that holds several 
processing machines, located in multiple data centers, on 
which VNFs can be hosted. We assume the following 
constraints:  

• Chunks of requests for network service deployment 
are periodically received at the infrastructure 
manager. 

• Each request includes the required execution plan of 
each service.  

• The infrastructure manager, based on monitoring of 
past set ups and knowledge of the capabilities of the 
available processing machines, estimates the time 
needed for setting-up a VNF to one of the available 
machines. 

• An optimisation algorithm is applied to schedule 
each chunk of requests, taking all constrains into 
account, and to export the total VNF execution plan. 

To address the problem of selecting an optimisation 
algorithm for the process described in the last bullet point 
above, principles of scheduling are studied, as explained 
below. 

A. Mapping to known scheduling problems 

In the literature, the scheduling mainly deal with the 
challenge of selecting time slots for performing a set of 
activities, with respect to a given set of constrains (commonly 
constraints such as resources limitations or precedence order 
among the activities), targeting at optimizing a performance 
metric [6]. In the majority of the network related scheduling 
approaches, the optimisation metric is either the total 
processing time of the activities (the well-known make span 
minimisation [7]) or the amount of processing resources 
allocated to run the activities.  

At the dawn of the slice-enabled networks, scheduling 
procedures fit well to procedures needed in sliced networks 
for allocating VNFs (the functional units that compose slices) 
to available processing resources. This mapping is based on 
the fact that, every network service is modelled as a service 
chain, i.e., a set of network functionalities, implemented as 
VNFs, in a specific order [8].  

The Job-Shop scheduling sets a combinatorial problem-
solving approach, used widely in literature to address resource 
allocation and scheduling problems [9, 10, 11, 12, 13]. Here 
we assume the Job-Shop scheduling with the following 
characteristics:  

• let a set of n jobs, denoted as J1, J2, … Jn of varying 
processing times 

• The jobs need to be scheduled on m machines, 
denoted as M1, M2, Mm 

• Within each job there is a set of 
operations O1, O2, ..., Oi  

• Each operation must be executed is a specific 
machine according to initial plan 

• Each machine can process one operation at a time 
and when an operation is assigned to a machine, the 
machine can not interrupt its execution 



The objective is to find an execution plan of the activities, 
applying to precedence and resource constraints of the system, 
to minimize the time in which all operations will be executed 
(find the makespan). To formulate the VNF scheduling, the 
following mapping is assumed: 

• JSSP machines are mapped to network provider’s 
machines that host VNFs 

• Jobs correspond to network slicing requests 

• Operations are mapped to VNFs, comprising a 
network slice. 

More specifically, based on this mapping and the 
principles of the model presented in [13], we use the following 
notation:  

• 𝑆 for the set of network slices, 𝑠𝑖 , 𝑖 ∈ [1, |𝑆|] 

• 𝐹 for the set of VNFs, 𝑓𝑖 , 𝑖 ∈ [1, |𝐹|] 

• 𝐻 for the set of hosts, ℎ𝑖 , 𝑖 ∈ [1, |𝐻|] 

• 𝑓𝑖𝑗 for the representation of the  𝑗𝑡ℎ VNF in the 𝑖𝑡ℎ 

network slice.  

• 𝑇𝑖𝑗
𝑝𝑞

 for the installation time of the 𝑞𝑡ℎ  VNF to its 

corresponding host ℎ𝑝  

Thus, the minimisation of makespan is defined as: 

𝑀𝑖𝑛𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = min[max[𝑡𝑖𝑗
𝑝𝑞

+  𝑇𝑖𝑗
𝑝𝑞

]] 

where max [𝑡𝑖𝑗
𝑝𝑞

+ 𝑇𝑖𝑗
𝑝𝑞

] is the completion time of the last 

VNF among all network slices. 

B. Algorithmic approach 

Based on the mapping presented in the previous section, 
a resolving of the VNF scheduling problem can be provided 
by resolving the related JSSP [14]. The JSSP is known as an 
NP-hard (Non-Deterministic Polynomial-time) problem, 
meaning it cannot be solved in polynomial time [15]. Thus, it 
makes ineffective the use of exact methods, such as the 
Dynamic Programming, the branch ‘n bound, etc., since they 
search exhaustively to space of all the potential solutions to 
find the optimal one.  

Also, it is worth noted that the execution time 
(complexity) of the optimisation algorithm to be used affects 
the overall slice set up time as well. In other words, the 
response time of the algorithm that performs the scheduling 
must be negligible, compared to the other procedures needed 
for setting the slice up.  

Based on the above observations, heuristic resolving 
methods fit well to the JSSP. Heuristic methods provide a 
near-optimal solution by constructing solutions according to 
greedy decisions [16]. Heuristics have some very interesting 
advantages. To name some, they work well for dynamic 
problem sizes [17]; they find a solution in reasonable time 
[9]; and they can be combined with other methods [18]. 
However, the ‘greedy’ nature of heuristics is not always 
preferable (since as the problem size increases, the near-
optimal solution they provide tends to be even worse, or the 
algorithm may stick on local minima or maxima). To 
compensate with the greediness of the heuristic methods, 
metaheuristic methods have emerged. The metaheuristic 
category of algorithms brings an additional advantage. The 
execution time can be tuned through execution parameters 

that can change based on the input size [19]. Digging into the 
plethora of metaheuristic methods, there is a set of algorithms 
called ‘nature-inspired’. The nature-inspired methods, as 
their name implies, adopt their behavior from various nature 
functionalities and have been extensively used in the last 
decade to solve various optimisation problems in many 
research fields such as cloud computing [20], power 
consumption [21] and data-mining [22]. According to [23], 
nature-based methods can be classified into four divisions: 
Evolution-based, Physics-based, Swarm-based, and Human-
based.  

Here, we adopt from the Evolution-based category a 
proven to be efficient and adaptive method, known as genetic 
or evolutionary method. 

IV. THE PROPOSED ALGORITHM 

Genetic or evolutionary method, as the name implies, is 
based on Darwin’s theory of evolution, adopting also some 
aspects from genetic science. Genetic Algorithm (GA) is an 
effective iterative method to solve combinatorial optimisation 
problems such as the one studied in this paper. The block 
diagram of the adopted method is depicted in Fig. 1, while 
each one of the blocks is explained below. 

 

Fig. 1. Block diagram of the adopted approach 

Encoding  
Solutions of a prodder study or randomly selected ones are 

encoded as series of VNFs, referred here as chromosomes. In 
a more abstract view, solutions are represented as arrays of 
VNFs or genes, with specific order, as the example that 
follows. 

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒: 

{𝑓31 , 𝑓21, 𝑓32, 𝑓41, 𝑓22 , 𝑓11, 𝑓33, 𝑓42 , 𝑓23 , 𝑓34, 𝑓12, 𝑓43 , 𝑓13, 𝑓44, 𝑓14 , 𝑓24} 

Crossover 

Crossover is a genetic operator analogous to biological 
reproduction, which aims at breeding new acceptable 
solutions from existing ones. Τhis procedure, requires two 
VNF chains (chromosomes) referred to as ‘parents’. First, for 
both ‘parents’ some points are randomly selected across their 
chain length and the chains are split into a number of parts. 
Then, a new chain of the same length is created by completing 



its parts from corresponding parts selected either from the one 
or from the other patent’s chain. An example is presented in 
TABLE II. 

TABLE II.  CROSSOVER EXAMPLE 

Partitioned Chromosome of Parent 1 
𝑓31, 𝑓21, 𝑓32 𝑓41, 𝑓22, 𝑓11, 𝑓33, 𝑓42, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓13, 𝑓44, 𝑓14, 𝑓24 

Partitioned Chromosome of Parent 2 
𝑓21, 𝑓31, 𝑓32 𝑓11, 𝑓41, 𝑓33, 𝑓42, 𝑓22, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓44, 𝑓13, 𝑓24, 𝑓14 

Crossover result for Child 1 
𝑓31, 𝑓21, 𝑓32 𝑓11, 𝑓41, 𝑓33, 𝑓42, 𝑓22, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓13, 𝑓44, 𝑓14, 𝑓24 

Crossover result for Child 2 
𝑓21, 𝑓31, 𝑓32 𝑓41, 𝑓22, 𝑓11, 𝑓33, 𝑓42, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓44, 𝑓13, 𝑓24, 𝑓14 

 
Mutation 

Mutation is the genetic operator that preserves the genetic 
diversity from one generation to the next. This is succeeded 
by changing randomly the order of the VNFs in the chain. 
However, a mutation can also produce unacceptable solutions 
that violate constrains. To prevent this, in our implementation, 
the randomness of mutation is restricted to chromosome areas 
that the constrains are not violated.  

TABLE III.  MUTATION EXAMPLE 

Chromosome of Child 1 with selected genes for mutation 

𝑓31, 𝑓21 , 𝒇𝟑𝟐 , 𝑓11, 𝑓41, 𝑓33, 𝒇𝟒𝟐 , 𝑓22 , 𝑓23, 𝑓34, 𝑓12 , 𝑓43 , 𝑓13, 𝑓44 , 𝑓14, 𝑓24 

Chromosome of Mutated Child 1 [Non-Acceptable] 

𝑓31, 𝑓21 , 𝒇𝟒𝟐 , 𝑓11, 𝑓41, 𝑓33, 𝒇𝟑𝟐 , 𝑓22 , 𝑓23, 𝑓34, 𝑓12 , 𝑓43 , 𝑓13, 𝑓44 , 𝑓14, 𝑓24 

Chromosome of Mutated Child 1 [Acceptable] 

𝑓31, 𝑓21 , 𝒇𝟐𝟐 , 𝑓11, 𝑓41, 𝑓33, 𝑓42 , 𝒇𝟑𝟐, 𝑓23, 𝑓34, 𝑓12 , 𝑓43, 𝑓13, 𝑓44 , 𝑓14, 𝑓24 

 
Evaluation (Fitness function) 

The process of Evaluation or Fitness function is used on 
evaluating the solutions produced from genetic operations. 
This evaluation happens by estimating the objective value that 
is chosen to be minimized, in every solution. This makes 
fitness function a problem-dependent issue. For JSSP, 
makespan is the objective value, that we have to minimize. In 
our implementation in order to correctly calculate fitness 
value for every scheduling solution, we had to take into 
consideration the set up time of the VNFs as well as the time 
periods that the hosts are available to set up the VNFs 
allocated to them.  

Selection 
The selection mechanism is used for keeping the most 

“genetically robust” children of a generation (thus the 
solutions with the optimal service creation time). The selected 
children, serve as parents in the next generation.  

Having presented the major functional blocks of the 
proposed approach, the pseudo code of the proposed GA is 
presented below. 

Algorithm: The Proposed Genetic Algorithm (GA) 

1:   𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ←
𝐶ℎ𝑜𝑜𝑠𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝐹𝑖𝑙𝑒) 
2:   𝑑𝑒𝑓𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟: 
3:             𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 
4:             𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 
5:             𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 
6:             𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
7:   𝑓𝑜𝑟 𝑝𝑎𝑟𝑥 , 𝑝𝑎𝑟𝑦  𝑖𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

8:             𝑓𝑜𝑟 𝑚 𝑖𝑛 [1, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠]: 

9:                       𝑓𝑜𝑟 𝑛 𝑖𝑛 [1,
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2
] : 

10:                                𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 

11:                                𝑖𝑓 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  ≤ 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

12:                                          𝑐ℎ𝑖𝑙𝑑𝑖 , 𝑐ℎ𝑖𝑙𝑑𝑗 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑎𝑟𝑥, 𝑝𝑎𝑟𝑦) 

13:                                𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 

14:                                𝑖𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  ≤ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

15:                                          𝑐ℎ𝑖𝑙𝑑𝑖 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑖) 

16:                                          𝑐ℎ𝑖𝑙𝑑𝑗 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑗) 

17:                                𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑 (
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒(𝑐ℎ𝑖𝑙𝑑𝑖),

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒(𝑐ℎ𝑖𝑙𝑑𝑗)
) 

18:                                𝑝𝑎𝑟𝑥 ← 𝑐ℎ𝑖𝑙𝑑𝑖, 𝑝𝑎𝑟𝑦 ← 𝑐ℎ𝑖𝑙𝑑𝑗 

19:                      𝑠𝑜𝑟𝑡(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡) 
20:                      𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ≤ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 
21:                                𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ← 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡  
22:                      𝑝𝑎𝑟𝑥 ← 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡  
23:                      𝑝𝑎𝑟𝑦 ← 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 

24:   𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 

V. PERFORMANCE EVALUATION 

A. Simulations set up 

In order to verify whether metaheuristic methods are 
efficient enough to be used on VNF scheduling, the proposed 
genetic algorithm is implemented on Python 3.6 and tested 
with benchmark instances formulated as it is exemplified in 

Fig. 2. More precisely, the format of every instance follows 

the rules listed below: 

1) The first row defines the number of network slices 
requests and number of VNF hosts for the specific 
instance, e.g. “6 6”.  

2) Each row contains a set of pairs whose number is 
dependent on the number of VNFs of each network 
slice.  

3) Each pair of numbers describes a specific VNF by 
defining the machine hosting the operation and the 
duration of executing the operation in time units e.g. “2 
1” means that the VNF is hosted by machine 2 and its 
execution will last 1 time-unit. 

 

Fig. 2. JSSP instance format 

The instances are used as input to our Python program, 
among other important experimental parameters, such as 
population size, number of generations, crossover and 
mutation possibility. Firstly, the instance’s data is translated 
to a more Python-friendly structure, using lists, tuples and 
dictionaries. Then, genetic algorithm is being executed on 
this structure, following the steps analyzed in section IV. The 
optimal plan of VNF scheduling is produced as output 
together with the makespan, the population size, the number 
of generations, the crossover and the mutation possibility, and 
the execution time of the algorithm.   

For the simulations, the algorithm was executed on a Dell 
Optiplex 7050, equipped by Intel Core i5-6500 processor 
(3.20 GHz x 4), running Ubuntu 18.04 (Bionic Beaver) 
Desktop. The output was stored in a Mongo database running 
on the same host. MongoDB was a NoSQL, document 



database, which offers an efficient, simple and powerful 
interface with Python language (PyMongo).  

Each evaluation result of the proposed algorithm was 
extracted after a numerous set of runs. Also, the algorithm 
was tested for a wide range of values for its configurable 
parameters. With no loss of generality, we adopted a 10x10 
dataset, named “orb04” (from [24]), with a known minimum 
makespan equal to 1005 time-units. 

B. Numerical results  

We first examine whether and in what extend the number 
of generations and population size affect the provided 
makespan (slice set up time). We set the possibility that a 
genetic operation (crossover and mutation) is applied to 0.7. 
The choice of this value is based on other experiments, 
described below, showing that is the specific range of values, 
makespan is optimized. The results are depicted on Fig. 3. 

 

Fig. 3. Average service creation time for “orb04” (5 runs per generation-

population size combination) 

 

 

Fig. 4. Genetic algorithm run time for “orb04” 

Reasonably, the higher the number of generations and 
populations, the higher the solution space that the algorithm 
examines. However, as depicted in Figure 3, as the number 
of generations and populations increases, shorter schedules 
are discovered, and optimal solution is approximated. In Fig. 
4, we measure also the time in which every result is produced. 
According to the results, the optimal solution was found in 11 
minutes using a common low-power computer as described 
in the previous section. 

Another interesting aspect of the proposed approach is 
that the genetic operators can be applied wisely to improve 
the results. As resulted from our study, the efficiency of the 
genetic operators depends on their matching possibility, 
which is an input of the algorithm. In the simulated example, 

in order to verify that the possibilities of the genetic operators 
are applied beneficially in the set of solutions examined (e.g. 
if the mutation possibility is set to 0.5, 50% of the whole 
population size in all generations must have been through 
mutation process), we tested various combinations of 
generation and population number and the results are 
depicted on Fig. 5. 

Consequently, taking the results of Fig. 5 into 
consideration, we examine whether genetic operators have 
impact on makespan searching in a set of solution composed 
by 40 generations and 100 children in each generation.  
According to Fig. 6, when the proposed algorithm is executed 
with higher values of mutation and crossover possibilities, 
makespan is decreasing (presented with even darker blue bar 
in the figure), thus optimizing scheduling. 

 

Fig. 5. Validation of genetic operators’ possibility in the dataset 

 

Fig. 6. Average service creation time for “orb04” (5 runs per crossover-

mutation possibility combination) 

 

Fig. 7. Average service creation time for “orb04” per possibility value 

One last, very interesting, result, is presented in Fig. 7. 
Mutation and crossover are compared on which one produces 



better results when the other has zero possibility to be 
implemented. The facts show that solely mutation gives way 
shorter makespan than crossover. However, the combination 
of them, brings even better results. 

VI. CONCLUSIONS 

Service creation time is one of the fundamental KPIs in 
5G systems, but also one of the most complicated, as it can 
be affected by multiple computational or network parameters. 
Its optimisation can have a great impact on the overall system 
performance, and eventually to the quality of provider’s 
network slice infrastructure services. Hence, in this paper, we 
presented a complete solution framework that implements a 
genetic algorithm, i.e., a meta-heuristic method, responsible 
to schedule the VNFs from various service requests in a 5G 
system. From the evaluation process revealed that meta-
heuristic algorithms can efficiently contribute towards a real-
time optimisation of service creation time. More precisely, 
the proposed genetic algorithm provided close-to-optimal 
result in adequately low processing time for the simulated 
example. Next steps in the direction of service creation time 
minimisation could possibly be the mapping of other meta-
heuristic algorithms to the specific problem and their 
implementation/evaluation in real slice-enabled systems. 

ACKNOWLEDGMENT 

The work described in this paper is co-funded by the 
5GENESIS project under the European Union’s Horizon 
2020 research and innovation programme (grant agreement 
No 815178) and also by the European Union and Greek 
national funds through the Operational Program 
Competitiveness, Entrepreneurship and Innovation, under the 
call RESEARCH – CREATE – INNOVATE (project 
CityZEN, code:T1EDK 02121). 

REFERENCES 

[1] 5G-PPP, "View on 5G Architecture," 2019. 

[2] F. Messaoudi and L. Valcarenghi, "5G-TRANSFORMER Project, 
Experimentation results and evaluation of achievements in terms of 
KPIs," 2019. 

[3] J. F. Riera, E. Escalona, J. Batallé, E. Grasa and J. A. García-Espín, 
"Virtual network function scheduling: Concept and challenges," in 
International Conference on Smart Communications in Network 
Technologies (SaCoNeT), Vilanova i la Geltru, Spain, 2014.  

[4] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. 
Lorca and J. Folgueira, "Network Slicing for 5G with SDN/NFV: 
Concepts, Architectures, and Challenges," IEEE Communications 
Magazine, May 2017.  

[5] 5G-PPP, "Contractual Arrangement," 2013. 

[6] P. Brucker and S. Knust, Complex Scheduling, Springer, 2012.  

[7] Anshulika and L. A. Bewoor, "A Genetic Algorithm approach for 
solving a Job Shop," in International Conference on Computer 
Communication and Informatics, Coimbatore, India, 2017.  

[8] L. Ruiz, R. J. Durán, I. De Miguel, P. S. Khodashenas, J.-J. Pedreno-
Manresa, N. Merayo, J. C. Aguado, P. Pavon-Marino, S. Siddiqui, J. 
Mata, P. Fernández, R. M. Lorenzo and E. J. Abril, "A Genetic 
Algorithm for VNF Provisioning," Applied Sciences, December 2018.  

[9] X. Xi, L. Jiang and Q. Zhang, "Optimization for Multi-Resources-
Constrained Job Shop Scheduling Based on Three-level Heuristic 
Algorithm," in International Asia Conference on Informatics in 
Control, Automation and Robotics, Bangkok, Thailand, 2009.  

[10] W. Wu, J. Wei and X. Guan, "A hybrid algorithm for scheduling in job 
shop problem with flexible resources," in International Conference on 
Control and Automation (ICCA), Xiamen, China, 2010.  

[11] C. Kurera and P. Dasanayake, "New Approach to Solve Dynamic Job 
Shop Scheduling Problem Using Genetic Algorithm," in 3rd 
International Conference on Information Technology Research 
(ICITR), Moratuwa, Sri Lanka, 2018.  

[12] M. Gamal, S. Jafarizadeh, M. Abolhasan, J. Lipman and W. Ni, 
"Mapping and Scheduling for Non-Uniform Arrival of Virtual 
Network Function (VNF) Requests," in 2019 IEEE 90th Vehicular 
Technology Conference (VTC2019-Fall), Honolulu, USA, 2019.  

[13] Q. Li, X. Wang, T. Zhao, Y. Wang, Z. Li and L. Rui, "An Improved 
Genetic Algorithm for the Scheduling of Virtual Network Functions," 
in 2019 20th Asia-Pacific Network Operations and Management 
Symposium (APNOMS), Matsue, Japan, 2019.  

[14] Z. Shen and L. Smalov, "Comparative Performance of Genetic 
Algorithm, Simulated Annealing and Ant Colony Optimisation in 
solving the Job-shop Scheduling Problem," in 26th International 
Conference on Systems Engineering (ICSEng), Sydney, Australia, 
2018.  

[15] M. Garey, D. Johnson and R. Sethi, "The Complexity of Flowshop and 
Jobshop Scheduling," Mathematics of Operations Research, vol. I, pp. 
117-129, 1976.  

[16] A. Mungwattana and K. Ploydanai, "Future Makespan Heuristic for job 
shop scheculing problem," in The 40th International Conference on 
Computers & Indutrial Engineering, Awaji, Japan, 2010.  

[17] J. Cui and T. Li, "A Hybrid Heuristic Neighborhood Algorithm for the 
Job Shop Scheduling Problem," in 2008 Fourth International 
Conference on Natural Computation, Jinan, China, 2008.  

[18] Y. Li, S. Wang, L. Ding and X. Xie, "A dynamic programming based 
heuristic in Max-algebra for solving a blocking flow-shop problem," in 
2nd International Conference on Measurement, Information and 
Control, Harbin, China, 2013.  

[19] C.-W. Tsai and J. J. P. C. Rodrigues, "Metaheuristic Scheduling for 
Cloud: A Survey," IEEE Systems Journal, vol. 8, no. 1, pp. 279 - 291, 
2014.  

[20] S. Kumar, S. Mittal and M. Singh, "Metaheuristic based workflow 
scheduling in cloud environment," in 5th International Conference on 
Reliability, Infocom Technologies and Optimization (Trends and 
Future Directions) (ICRITO), Noida, India, 2016.  

[21] G. Phatai, S. Chiewchanwattana and K. Sunat, "A Comparative of 
Neural Network with Metaheuristics for Electricity Consumption 
Forecast Modelling," in 22nd International Computer Science and 
Engineering Conference (ICSEC), Chiang Mai, Thailand, 2018.  

[22] W. Liu and J. Wang, "A Brief Survey on Nature-Inspired 
Metaheuristics for Feature Selection in Classification in this Decade," 
in IEEE 16th International Conference on Networking, Sensing and 
Control (ICNSC), Banff, AB, Canada, 2019.  

[23] R. Rajakumar, P. Dhavachelvan and T. Vengattaraman, "A survey on 
nature inspired meta-heuristic algorithms with its domain 
specifications," in International Conference on Communication and 
Electronics Systems (ICCES), Coimbatore, India, 2016.  

[24] [Online]. Available: https://github.com/tamy0612/JSPLIB. [Accessed 
July 2019].  

 

 

 


