
5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 1 of 61

Deliverable D5.1

System-Level Tests and Verification

Editor D. Triantafyllopoulou (UNIS)

Contributors NCSRD, UMA, UNIS, SHC, FhG, ATOS, ATH, TID, COS, FON,
INF, NEM, FOG, REL, IHP, UPV, INT, OA

Version 1.0

Date March 3rd, 2020

Distribution PUBLIC (PU)

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 2 of 61

List of Authors

Listed in previous page All partners involved in T5.1

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 3 of 61

Disclaimer

The information, documentation and figures available in this deliverable are written by the
5GENESIS Consortium partners under EC co-financing (project H2020-ICT-815178) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 4 of 61

Copyright

Copyright © 2020 the 5GENESIS Consortium. All rights reserved.

The 5GENESIS Consortium consists of:

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” Greece

AIRBUS DS SLC France

ATHONET SRL Italy

ATOS SPAIN SA Spain

AVANTI HYLAS 2 CYPRUS LIMITED Cyprus

AYUNTAMIENTO DE MALAGA Spain

COSMOTE KINITES TILEPIKOINONIES AE Greece

EURECOM France

FOGUS INNOVATIONS & SERVICES P.C. Greece

FON TECHNOLOGY SL Spain

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG
E.V.

Germany

IHP GMBH – INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS/LEIBNIZ-
INSTITUT FUER INNOVATIVE MIKROELEKTRONIK

Germany

INFOLYSIS P.C. Greece

INSTITUTO DE TELECOMUNICACOES Portugal

INTEL DEUTSCHLAND GMBH Germany

KARLSTADS UNIVERSITET Sweden

L.M. ERICSSON LIMITED Ireland

MARAN (UK) LIMITED UK

MUNICIPALITY OF EGALEO Greece

NEMERGENT SOLUTIONS S.L. Spain

ONEACCESS France

PRIMETEL PLC Cyprus

RUNEL NGMT LTD Israel

SIMULA RESEARCH LABORATORY AS Norway

SPACE HELLAS (CYPRUS) LTD Cyprus

TELEFONICA INVESTIGACION Y DESARROLLO SA Spain

UNIVERSIDAD DE MALAGA Spain

UNIVERSITAT POLITECNICA DE VALENCIA Spain

UNIVERSITY OF SURREY UK

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the 5GENESIS Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement
of the authors of the document and all applicable portions of the copyright notice must be
clearly referenced.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 5 of 61

Version History

Rev. N Description Author Date

1.0 Release of D5.1 D. Triantafyllopoulou (UNIS) 03/03/2020

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 6 of 61

LIST OF ACRONYMS

Acronym Meaning

ADB Android Debug Bridge

API Application Programming Interface

ATDD Acceptance Test-Driven Development

CRUD create, read, update and delete

E2E End To End

ELCM Experiment Lifecycle Manager

EMS Element Management System

ESXI Elastic Sky X Integrated

ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

ICT Information & Communications Technologies

KPI Key Performance Indicator

MANO Management and Orchestration

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NSD Network Service Descriptor

NSI Network Slice Instance

NSR NS Record

OS Operating System

RAN Radio Access Network

RAT Radio Access Technology

RC Release Candidate

REST Representational State Transfer

SCP Secure Copy Protocol

SSH Secure Shell

TAP Test Automation Platform

UE User Equipment

VIM Virtual Infrastructure Manager

VNFD Virtual Functions Descriptor

VNFR VNF Record

VPN Virtual Private Network

Watir Web Application Testing in Ruby

WIM WAN Infrastructure Manager

WP Work Package

Git Global Information Tracker

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 7 of 61

Executive Summary

This deliverable presents the WP5 activities on the integration and testing of the Coordination
layer and the slice manager components of the 5GENESIS Facility, and the respective testing
towards the validation of the ‘Release A’ WP3 implementations.

To this end, the integration workflow, which consists of three phases, is introduced. The first
phase is carried out in the development environment, to delivers the components to be
integrated in each release cycle. Then, the second integration phase, executed in a dedicated
integration environment in the Athens Platform, performs the deployment, validation and
integration of the developed components. Lastly, in the final deployment phase, the validated
software release is deployed in each of the 5GENESIS Platforms. For future releases of the
software components, appropriate test automation tools are also considered. The integration
of the individual components follows a Git based methodology, used to determine the
component versions to be integrated, the verified releases for Platforms’ integration, as well
as, to offer a systematic channel to provide feedback on the development process.

The 5GENESIS Coordination Layer provides the experimenters with the necessary tools in order
to use the Platforms for executing their experiments. These include the means for the definition
and automatic control of the life cycle of an experiment, the storage of the respective
experimentation results, and the automated communication with the lower layers of the
5GENESIS architecture for the execution of the experiments. This deliverable also includes a
brief overview of the individual components of the 5GENESIS Coordination Layer. These
include: i) the Experiment Lifecycle Manager, for the overseeing of the experiment, ii) the
Monitoring and Analytics module for the analysis of the raw data collected during an
experiment, iii) the Portal, which provides the main interface to the experimenters, and iv) the
Slice Manager. The Coordination Layer has three south-bound interfaces that are used for its
interconnection with the lower layers of the 5GENESIS architecture.

This deliverable covers the integration of coordination layer components and the “slice-
manager” i.e. the south-bound interfaces (but excludes integration with MANO &
infrastructure, which are reported in WP3 deliverables). The Slice Manager, although not part
of the Coordination Layer, is vital for the abstraction of the underlying infrastructure and as
such the deployment and integration is also part of this deliverable.

The integration between platforms via each-west interface, based on extension of OpenAPI, is
currently in progress, as part of Phase 3 activities.

The installation, integration and testing of the Release A of the individual components has taken
place in a dedicated integration and testing environment, which was created in the Athens
Platform. All partners involved in the integration activities have access to this environment via
a Virtual Private Network (VPN) connection.

The validation of the components’ integration was performed via well-defined integration tests
that were used for testing the proper operation of the installed components, as well as their
communication. An end-to-end experiment lifecycle test was also created, in order to perform
end-to-end testing of the full experimentation cycle. The results of the integration testing per
Platform at the time of the deliverable submission are also reported.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 8 of 61

Table of Contents

LIST OF ACRONYMS .. 6

LIST OF FIGURES... 9

LIST OF TABLES .. 10

 INTRODUCTION .. 11

 Purpose of the document .. 11

 Structure of the document .. 11

 Target audience ... 12

 OVERARCHING VERIFICATION METHODOLOGY ... 13

 Integration and Validation ... 13

 Extending and automating integration testing .. 14

 Git-based Approach for Component Integration ... 15

2.3.1. Component Releases .. 15

2.3.2. Semantic Versioning ... 17

2.3.3. Delivery and Deployment of Releases .. 18

 5GENESIS FACILITY RELEASE A ... 19

 5GENESIS FACILITY Release A Features ... 19

 Interfaces ... 21

3.2.1. Instrumentation .. 23

 DEDICATED INTEGRATION ENVIRONMENT ... 26

 TESTING AND VALIDATION PROCESS ... 27

 TESTING AND VALIDATION RESULTS ... 38

 Athens Platform ... 38

 Berlin Platform ... 39

 Limassol Platform .. 39

 Malaga Platform .. 40

 Surrey Platform .. 41

 CONCLUSIONS ... 42

REFERENCES .. 43

ANNEX 1: ATHENS PLATFORM INTEGRATION ENVIRONMENT .. 44

ANNEX 2: SURREY PLATFORM INTEGRATION ACTIVITIES (SCREENSHOTS) 46

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 9 of 61

LIST OF FIGURES

Figure 1. 5GENESIS development and integration workflow .. 13

Figure 2. Git based master/develop/release work flow .. 16

Figure 3. Git based master/develop/release workflow showcasing bug fixes 16

Figure 4. Git based master/develop/release workflow mapped to WPs. 17

Figure 5. Slice Manager Architecture ... 21

Figure 6: ADB Agent settings .. 24

Figure 7: ADB Ping agent logcat output .. 25

Figure 8. Openstack Integration Environment .. 26

Figure 9. VMWare ESXI Integration Environment ... 26

Figure 10. Openstack Networks .. 44

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 10 of 61

LIST OF TABLES

Table 1. Operations between SM and MANO components .. 22

Table 2. Test Case Template ... 27

Table 3. 5GENESIS Release A integration tests ... 27

Table 4. int-test-01-01: Portal Login ... 28

Table 5. int-test-02-01: ELCM ... 29

Table 6. int-test-03-01: Portal-ELCM Communication .. 30

Table 7. int-test-04-01: ELCM-OpenTAP- integration ... 31

Table 8. int-test-05-1: Slice Creation .. 33

Table 9. int-test-06-01: End-to-end experiment lifecycle test .. 34

Table 10. The Athens Platform verification results ... 38

Table 11. The Berlin Platform verification results ... 39

Table 12. The Limassol Platform verification results .. 39

Table 13. The Malaga Platform verification results .. 40

Table 14. The Surrey Platform verification results .. 41

Table 15. Integration Components ... 45

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 11 of 61

 INTRODUCTION

 Purpose of the document

This deliverable reports on the activities of the first two tasks of 5GENESIS WP5, “System-level
Verifications and Documentation” i.e. “End-to-End facility integration” (Task 5.1) and “System-
level tests and verification” (Task 5.2). The objective of this work is to carry out the integration
of the individual components that constitute the 5GENESIS coordination layer plus slice
manager components, as well as define and conduct the respective integration testing,
resulting in the deployment of Release A components in all 5GENESIS platforms.

Firstly, the necessary development and integration workflow for the delivery of the integrated
5GENESIS Facility is described. To this end, the software development workflows, the semantics
for designating each component’s source code status and the coordination between the
different developers in order to deliver the pre-integration source code are provided.
Automation tools for the extension and automation of the integration testing of future releases
of the Facility are also evaluated. The individual components, developed in the context of WP3,
are collected from all repositories and are installed, tested and integrated in a controlled
integration and testing environment in the Athens Platform.

A high-level overview of Release A of the 5GENESIS Coordination Layer and Slice Manager are
also provided. A brief discussion on its features is made, while its main functional components
are introduced. Emphasis is given on its south-bound interfaces that are necessary for its
interconnection with the underlying components of the 5GENESIS architecture.

Moreover, this deliverable also reports on the WP5 activities regarding the testing and
verification of the overall 5GENESIS Facility. More specifically, a set of tests was defined with
the aim to validate the component integration of the 5GENESIS Facility Release A. The tests
were carried out against concretely defined test cases, following the template of ETSI NFV, with
specific pre-defined sequences and success criteria, ensuring that the requirements set out in
WP2 were properly met. Finally, a report on the progress of the integration activities in each
Platform at the time of the deliverable submission is also provided.

 Structure of the document

This deliverable is structured as follows:

• Section 2 describes the overarching 3-phased methodology adopted for the final successful
integration of the Coordination Layer and Slice Manager components in each 5GENESIS
Platform. Specifically, the process workflows have been established and best practise
guides are outlined.

• Section 3 provides a description of the 5GENESIS Coordination Layer and Slice manager,
firstly by introducing its main features and components, and then by defining its south-
bound interfaces that are used for its interconnection with the lower layers of the 5GENESIS
architecture.

• Section 4 describes the dedicated integration and testing environment that was created on
the Athens Platform, in order to install, integrate and test the Release A components.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 12 of 61

• Section 5 defines the tests used to validate the integration of the Release A of the
Coordination Layer components.

• Section 6 provides the results of the testing and validation activities.

• Section 7 provides concluding remarks.

• Finally, Annex 1 reports on the results of the integration tests for the Platforms that already
have proceeded with the integration of the different components of the 5GENESIS
Coordination Layer.

 Target audience

The target audience of this deliverable includes the ICT professionals or research projects who
are interested in performing experimentations, the European Commission, who can use this
document as a means for the evaluation of the activities of the Platform with regards to the
project objectives, as well as the 5GENESIS consortium, who can use it as a guide and reference
regarding future activities.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 13 of 61

 OVERARCHING VERIFICATION METHODOLOGY

This chapter presents the WP5 approach on the integration activities that result in a
homogeneous, interoperable software framework (Coordination Layer plus Slice Manager) that
is being deployed in each 5GENESIS Platform. The objective of this chapter is to present the
basic operations and workflows that need to be realized in order to deliver the integrated
5GENESIS coordination layer as soon as each development phase concludes. In this context,
WP5 defines the software development workflows, the semantics for designating each
component’s source code status and the coordination between the different developers in
order to deliver the pre-integration source code. Moreover, WP5 is responsible to collect the
components from all repositories and provide a full and finite 5GENESIS Release, ready to be
on boarded per Platform.

 Integration and Validation

This paragraph presents the workflow adopted by WP5 in order to support the component
integration activities, validate the integration and provide system level testing. The workflow is
presented in Figure 1.

Figure 1. 5GENESIS development and integration workflow

Three phases are considered in 5GENESIS, starting from the development of the individual
components, towards their deployment in the respective 5GENESIS Platforms in order to create
the 5GENESIS Facility, namely (i) the development phase; (ii) integration phase and (iii) the final
deployment phase. Each of these phases is supported and executed in its respective
environment. Initially the developers use their own development environment (i.e., Pre-
integration environment) to develop the components. In this environment, Infrastructure
(sandbox environments available at 5GENESIS Platforms) and software tools (e.g., Gitlab) are
exploited for development and manual functional tests. It is expected that unit tests are
executed in this environment. According to the project workplan, each component that is being
developed in each separate repository is designated as candidate for release. It is important to
note that the project specifies 3 phases that correspond to the deployment of coordination
layer and slice manager releases as well as integration with infrastructure elements. The
integration phase starts when the software components are tagged and made available. This

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 14 of 61

phase is supported by the Integration Environment. This environment is created in one of the
Platforms and supports computing and network resources exploiting virtualization capabilities
available at the Platforms. During this phase, for each component as well as for the whole
coordination layer, the following actions are performed:

• Deployment and configuration is done according to the documentation/deployment
scripts that are available by the developers

• Interoperability tests between peering components are executed

• Integration validation according to well-defined integration tests is executed

• System level tests are executed.

• Documentation and configuration are updated according to the integration findings,
fixing omits and pre-requisites.

When the component(s) integration phase ends successfully, the integrated code versions are
tagged as main release(s) and the software is ready to be deployed at their final destination
(i.e., the 5GENESIS Platforms). The environment that supports this activity is specific to each
Platform, as different infrastructure elements or virtualization technologies maybe utilized in
each Platform. There are two possibilities for this final step:

(i) Deploy the resulted integrated components which are provided as pre-packaged virtual
machines directly in the compatible virtualization environment of the Platform.

(ii) Deploy each component using the updated documentation and configuration
guidelines that are provided by WP5.

Both approaches are validated using the integration tests that have been defined by WP5
during the integration phase. These tests are defined in Section 5.

 Extending and automating integration testing

For future releases (beyond Rel.A) automation of the test process is considered. In order to
achieve the automation of the integration activities, the following test automation tools have
been evaluated:

• Watir [1] - stands for “Web Application Testing in Ruby” and it is an open source Ruby
library for automating tests. Watir interacts with a browser the same way people do:
clicking links, filling out forms and validating text.

• Robot [2]- is a generic test automation framework for acceptance testing and
acceptance test-driven development (ATDD). It has easy-to-use tabular test data syntax
and it utilizes the keyword-driven testing approach. Its testing capabilities can be
extended by test libraries implemented either with Python or Java, and users can create
new higher-level keywords from existing ones using the same syntax that is used for
creating test cases.

• pyTest [3]- is a python-based test framework for testing applications and python
libraries. It is used from command line and requires tests to be formatted in a specific
way so the framework can identify and execute them.

• Shell - UNIX shell scripting may be used to create testing scripts that use the available
Application Programming Interfaces (APIs) to make integration and validation tests.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 15 of 61

• jmeter [4]- is a 100% pure Java tool and has an Ubuntu installer in order to be used by
command line to perform the tests or via Graphical User Interface. It may be used to
test performance both on static and dynamic resources. It can be used to simulate a
heavy load on a server, group of servers, network or object to test its strength or to
analyse overall performance under different load types.

• OpenTAP is a framework for automation that has been used in the automation of the
execution of the experiments. This tool can be also used to implement the test cases
defined to check the integration of the coordination layer and the slice manager.

Based on evaluations, partner’s expertise, python support and reporting features and 5GENESIS
requirements, the most appropriate tools for the objectives of 5GENESIS are determined to be
Robot and pyTest. These two tools are considered to be the most suitable candidates for Rel B
onwards.

 Git-based Approach for Component Integration

In this section we propose a Git based methodology to address the integration of the WP3
components i.e., releases, hotfixes and feature enhancements. The proposed approach
described here addresses three fundamental questions:
1. Which version (commit) of Component X developed by WP3 should be integrated and

deployed by WP5 in the various 5GENESIS Platforms?
2. How WP3 developers can provide the Release Candidates (RC) of their individual

components for Platform integration? and,
3. How WP5 integrators can provide feedback to WP3 developers to develop hotfixes and

provide feature enhancements.

The proposed methodology uses the best practices currently employed in software
development. The three-pronged approach involves:
1. Release - Provides a consistent and well-defined approach that adopts the Git’s

master/develop/release workflow,
2. Version - a common agreed upon semantic versioning scheme,
3. Deploy - Provides an installation script that installs in a single step the component on top

of a plain OS.

2.3.1. Component Releases

Software development is a continuous process and even after a component/software module
is released for integration or production, the component is not in its final state in terms of
feature development. When a component is said to be released, it only implies that a certain
subset of features / requirements that been agreed during the start of the release cycle have
been implemented and fulfilled.
New development activities for the component commence at the start of a new release cycle.
However, while the new release cycle is ongoing, bugs are invariably discovered on the
(previous) released version and fixes for the same must be provided to improve the stability of
the release. Git branches provide a clean solution to separate development efforts from bug
fixes.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 16 of 61

In the context of 5GENESIS, we propose to use Git based master/develop/release work flow, as
illustrated in Figure 2 and Figure 3. The master branch is a protected branch that is production
ready, while the develop branch is where the actual component development and commits
happens. Thus, as illustrated in the figures, the develop branch initially branches out of the
master branch, and when ready for release, is merged back into the master branch.
Once a set of features / requirements agreed upon at the start of the release cycle are realized,
a release candidate (RC) is forked from the develop branch. All bug fixes discovered henceforth
are committed back on the forked RC branch. When the RC is stable for release, the RC branch
is merged back to the develop and master branches. Furthermore, a protected and read-only
tag of the master branch with the correct release version is created.

Figure 2. Git based master/develop/release work flow

Figure 3. Git based master/develop/release workflow showcasing bug fixes

In the context of 5GENESIS, the git-based master/branch/release workflow is mapped to the
work package activities as depicted in Figure 4.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 17 of 61

Figure 4. Git based master/develop/release workflow mapped to WPs.

WP3 works on the development of the individual components and produces a RC for WP5. WP5
tests the RC and provides feedback to WP3 to provide bug fixes. Once no more bugs are
discovered on the RC, WP3/5 merges the RC with bug fixes back to develop and master
branches. WP5 produces a tag from the master branch with correct release name (Release_N).
WP4 deploys the tested tag Release_N in their Platform.

2.3.2. Semantic Versioning

Software exists in different versions and developers use versioning to communicate
information about their software. Information conveyed during versioning may involve one or
more of the following:
1. Time of creation
2. Features
3. Compatibility
4. Target Architecture

In the context of 5GENESIS, semantic versioning of the components is proposed. The approach
consists of three numbers separated by dots in the format:

MAJOR.MINOR.PATCH

The versioning is largely intended for the (dependency) management of the component APIs.
Thus, for instance, PATCH part of the version would be incremented when bug fixes with no
implications on the APIs offered by the component are made. The MINOR part of the version
number is incremented when API additions and changes are made with backward compatibility.
When drastic API changes are made with no backwards compatibility, the MAJOR part of the
version number is incremented.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 18 of 61

Thus, at the start, 0.1.0 is assigned to the initial development release of a component and the
minor version incremented for each subsequent release. When the component is ready to be
deployed in the production environment (individual Platforms) during the first release cycle,
the version number is incremented to 1.0.0. During the next development release, the minor
version is incremented to 1.1.0. Bug fixes on this release would increment the PATCH, i.e., 1.1.1
to 1.1.n

2.3.3. Delivery and Deployment of Releases

In the context of 5GENESIS, the delivery of every Release and Release Candidate includes an
installation script that installs in a single step the delivered component on top of a plain
Operating System (OS) (e.g., Ubuntu 18.04 LTS). The installation script can be provided either
as an:
1. Shell script, or
2. Ansible1

The installation script would be responsible for the deployment and the configuration of the
individual components. The integrators (WP5) would then work on bringing the various
components together, e.g., by orchestrating the components and services via Kubernetes.
WP4, responsible for the appropriate instantiation of validated 5GENESIS releases, then
receives a layer (e.g., 5GENESIS Coordination Layer) as a Service, i.e., ready to use k8s
deployment.

1 Ansible - https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html

https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 19 of 61

 5GENESIS FACILITY RELEASE A

In this section, a brief overview of the 5GENESIS Facility Layer Release A is provided. Firstly, the
features of the Coordination layer and Slice Manager are briefly described, followed by an
overview of its different functional components. Finally, the south-bound interfaces for the
interconnection of the Coordination Layer and the Slice Manager with the underlying 5GENESIS
architecture are defined.

 5GENESIS FACILITY Release A Features

The 5GENESIS Facility is the entry point for experimenters who wish to make use of the
Platforms for the execution of their experiments. The Release A of the Coordination Layer
provides:

• A web Portal that allows the definition of experiments that can be executed in the
Platform, and the visualization of the most important results of an execution.

• The automatic control of the life cycle of such experiments.

• Communication between the Portal and the Experiment Lifecycle Manager (ELCM) via
the initial version of the OPEN API described in D3.7 [5].

• The long-term storage of the results generated by the experiments.

• Automated communication with the Slice Manager and the lower layers for the
configuration of probes and instruments required for the execution of experiments.

Based on the 5GENESIS architecture, the experimenter/vertical has two options for performing
an experiment:

• Through the 5GENESIS GUI/Portal (Available demo at 5GENESIS booth), where the
experiment descriptor is automatically generated and sent to the dispatcher (IDEAL FOR
E2E KPI ASSESSMENT)

• Directly via the 5GENESIS open API, allowing the experimenter to use the facility with
its own scripts (IDEAL FOR VALIDATION OF A NEW COMPONENT OR SERVICE).

The Dispatcher obtains the experiment descriptor from the Portal, initiates the validation of
the descriptor and sends the experimentation plan to the scheduler that enqueues the
execution until all necessary resources are available. Once the Management and Orchestration
Layer confirms that the required resources are available then the execution of the experiment
starts The Dispatcher is also able to send part of an experiment descriptor to a Dispatcher on
another 5GENESIS Platform for distributed execution of experiments.

Upon availability of the resources the Slice manager creates the requested E2E network slice
instance allowing the multi-tenant use of the facility by different experimenters. The created
network slice instance crosses all the components of infrastructure, starting from the Core
NFVI, the transport network, the Edge, the RAT and finally the UEs.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 20 of 61

The scope of interfaces and components covered in this report are the Portal, ELCM, Slice
Manger and analytics.

The Coordination layer is defined in more detail on Section 3.2 of Deliverable D2.2 [6].The Slice
manager is detailed in Deliverable 3.3 [9]. Note that the aforementioned SW components have
been provided by WP3 deliverables.

• ELCM: The Experiment Lifecycle Manager is the entity that oversees the execution of
an experiment from the start until the end of the experiment. The ELCM is able to
receive execution requests generated by the 5GENESIS Portal in the form of the
experiment descriptor and is able to perform the execution of multiple experiments in
parallel. By sending requests to the Slice Manager’s REST API the ELCM is able to
instantiate the network services required by the experiment, and decommission them
once the execution finishes, freeing the resources for other experiments. More
information about the development and functionality of this component can be seen in
Deliverable D3.15 [7].

• Monitoring and Analytics
The analytics module performs the analysis of the raw data generated during an
experiment execution, performing the calculation of the key performance indicators of
the experiment. During Release A, several probes have been developed and integrated,
as well as scripts for processing the results provided by these probes. More information
about these probes is available in Deliverable D3.5 [8].

• Portal
The Portal provides a Web-based user interface that experimenters interact with in
order to define and execute experiments in the Platforms. The Portal also allows
experimenters to view a selection of the most relevant results generated by their
experiments in the form of custom Grafana dashboards. During Release A, the Open API
is embedded as part of the Portal and the ELCM, which makes the communication
between these two components direct. More information about the Portal can be seen
in Section 4 of Deliverable D3.7 [5].

• Slice Manager
In 5GENESIS the slice view will be provided and controlled from a central software
component, i.e., the Slice Manager, a standalone component that is implemented as
part of the 5GENESIS Coordination Layer and is deployed in all 5GENESIS Platforms. The
Slice Manager is developed in the scope of the WP3 activities, it is an open source
project under the Apache 2 license and Release A is described in D3.3 [9]. Following the
“Study on management and orchestration of network slicing for next generation
network”[10], a Network Slice Instance (NSI) is a managed entity which can be described
as the sum of various sub-slices of different network domains, such as the Radio Access
Network (RAN), the transport network, the Core Cloud and the Edge Cloud. The
5GENESIS Slice Manager is responsible for the communication with the underlying
components of each Platform, as depicted in Figure 5, in order to provide the required
resources across the different domains of the testbed and instantiate the network
services that constitute an end-to-end communication service.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 21 of 61

Figure 5. Slice Manager Architecture

The 5GENESIS Slice Manager is based on a highly modular architecture, built as a
collection of microservices, each of which is running on a docker container. The key
advantages of this architectural approach are that it offers simplicity in building and
maintaining applications, flexibility and scalability, while the containerized approach
makes the applications independent of the underlying system.

The 5GENESIS Slice Manager provides a set of North-Bound REST APIs, that follow the
Open APIs 3 specification [11], together with a built-in Swagger-UI tool, which is used
for documenting, testing and consuming the API endpoints. These APIs can be
consumed by the 5GENESIS Experiment Life Cycle Manager (ELCM) or by the Slice
Manager Administrator in order to trigger some of the Slice Manager functionalities,
such as performing create, read, update and delete (CRUD) operations on NSIs, adding
South Bound components of the underlying Platform or retrieving information about
an instantiated 5G Network Slice.

 Interfaces

This sub-section describes the south-bound interfaces for the interconnection of the
Coordination Layer and Slice Manager with the underlying architecture. More specifically, these
are the following:

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 22 of 61

• SM-NMS/NFVO:
The Slice Manager communicates with the underlying MANO components in order to
perform CRUD operations on sub-slice instances or retrieve information about the
underlying Platform infrastructure. More specifically, the components with which Slice
Manager interacts are the Virtual Infrastructure Managers (VIMs), Network Function
Virtualization Orchestrators (NFVOs), WAN Infrastructure Manager (WIM), Element
Management System (EMS) and Monitoring Framework. An Adaptation Layer is
introduced as part of the Slice Manager architecture, as depicted in Figure 5, in order
to provide a level of abstraction regarding the underlaying layer technology, making it
feasible for the Slice Manager to operate over any type of the aforementioned
Management and Orchestration (MANO) layer components, without any modifications
to its core functionality, as long as the proper plugin modules have been loaded. The
plugins translate the Slice Manager messages to type-specific messages for the South
Bound components.
Table 1 presents the operations between the Slice Manager and the MANO layer
components of the 5GENESIS facilities.

Table 1. Operations between SM and MANO components

Component Operation Phase

VIM Create a new Tenant Slice Creation – Resource Provisioning

Delete a Tenant Slice Termination

NFVO Read Network Service Descriptors
(NSDs) and Virtual Functions
Descriptors (VNFDs)

Slice Creation – Placement

Add a new VIM account (VIM Tenant) Slice Creation – Resource Provisioning

Instantiate a new NS Slice Creation – Activation

Read NS Records (NSRs) and VNF
Records (VNFRs)

Slice Creation – Activation

Delete an instantiated NS Slice Termination

Delete a VIM account (VIM Tenant) Slice Termination

WIM Create the transport network graph Slice Creation – Resource Provisioning

Activate the network traffic steering
for a network slice

Slice Creation – Activation

Delete the transport network graph Slice Termination

EMS Reserve RAN components Slice Creation – Resource Provisioning

Configure and start RAN services Slice Creation – Activation

Terminate RAN services Slice Termination

Release RAN components Slice Termination

MON Get information about Platform
available resources

Slice Creation – Placement

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 23 of 61

• Validator to MANO:

As part of the Open APIs’ features, 5GENESIS offers a validator interface to validate
VNFDs and NSDs prior to the onboarding in the Platform. This module, located inside
the Dispatcher, performs an enhanced syntax validation over the packages, more
thorough than the one provided by the NFVO itself, which is too relaxed for the Project
needs, allowing descriptors that do not match the accepted information model,
hindering the parsing of the descriptors in later phases of their lifecycle. The Validator
exposes several functionalities over this interface:

▪ VNFD validation
▪ VNFD validation + onboarding in the NFVO
▪ NSD validation
▪ NSD validation + onboarding in the NFVO

It is possible to validate a descriptor without actually having to onboard it. This is a
particularly useful feature for an external user, who can test the validity of the
descriptor during the creation process without affecting the rest of the system.

• Validator to ELCM:
Another feature of the Validator is to validate not only NFV descriptors but also
5GENESIS Experiment descriptors. This interface offers also similar functionalities:

▪ Experiment descriptor validation
▪ Experiment descriptor validation + onboarding in the ELCM

3.2.1. Instrumentation

• UE-side Configuration:
Several options are available for the management and configuration of UEs and the
different instruments available in the Platform: The ELCM includes functionality for
running tasks through the command line, which give Platform administrators the
possibility of running any application or script required for the configuration of a device
as part of an experiment execution.
Additionally, two generic TAP Plugins have been developed: The SSH and ADB plugins.
The SSH plugin can be used for controlling any remote machine through this protocol
and is also able to send and retrieve files by using SCP. The ADB (Android Debug Bridge)
plugin includes functionality for transferring files to and from an Android device,
managing Logcat (the Android logging tool) and execute commands in a generic way.
The ADB Plugin provides the basic functionality used by a second plugin (ADB Agents)
that is able to control several Android probes, such as the resource monitoring agent
and the Ping and iPerf probes.

Android probes, such as the resource monitoring agent and the Ping and iPerf probes.
The sequence of commands sent to the device is similar in all the available Agents, with
changes in the intent’s name and additional parameters. Below is a detailed description
of the commands used while controlling the Ping agent, all the actions are performed
automatically by the TAP Plugin using the settings specified by the user. Figure 6 shows
the available ping settings.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 24 of 61

Figure 6: ADB Agent settings

1- First, the plugin sends instructions to the device so that all messages generated
by the Ping agent are sent to a file in the device. This file will later be retrieved
in order to obtain all the measurements generated:

adb.exe logcat -b main -f sdcard/adb_ping_agent.log -v threadtime -r 16384 -n

8 ping.Report:I *:S

2- The plugin makes use of the intents exposed by the agent in order to initiate

the measurement. At this point also the configuration parameters set on the
step are sent to the agent:

adb.exe shell am startservice -n com.uma.ping/.PingService -a

com.uma.ping.START -e com.uma.ping.PARAMETERS

"target=8.8.8.8,ttl=128"

3- After waiting for a specific amount of time (10 seconds in this case), the plugins

send the order to stop the measurement:

adb.exe shell am startservice -n com.uma.ping/.PingService -a

com.uma.ping.STOP

4- The plugin retrieves the log file created in step 1 and process the contents

internally in order to retrieve the generated results. Figure 7 shows an example
of the raw results generated by the agent.

adb.exe pull "sdcard/adb_ping_agent.log" "[..]\adb_ping_agent.log"

12-12 10:30:24.141 10317 10364 I ping.Report:

<<<Timestamp:1576143024152;Time:0;Delay:32.7>>>

12-12 10:30:25.161 10317 10364 I ping.Report:

<<<Timestamp:1576143025164;Time:1;Delay:29.8>>>

12-12 10:30:26.101 10317 10364 I ping.Report:

<<<Timestamp:1576143026108;Time:2;Delay:26.1>>>

12-12 10:30:27.141 10317 10364 I ping.Report:

<<<Timestamp:1576143027146;Time:3;Delay:28.3>>>

12-12 10:30:28.171 10317 10364 I ping.Report:

<<<Timestamp:1576143028178;Time:4;Delay:28.2>>>

12-12 10:30:29.191 10317 10364 I ping.Report:

<<<Timestamp:1576143029195;Time:5;Delay:25.3>>>

12-12 10:30:30.141 10317 10364 I ping.Report:

<<<Timestamp:1576143030142;Time:6;Delay:25.5>>>

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 25 of 61

12-12 10:30:31.161 10317 10364 I ping.Report:

<<<Timestamp:1576143031166;Time:7;Delay:25.3>>>

12-12 10:30:32.191 10317 10364 I ping.Report:

<<<Timestamp:1576143032195;Time:8;Delay:27.7>>>

12-12 10:30:33.141 10317 10364 I ping.Report:

<<<Timestamp:1576143033142;Time:9;Delay:25.6>>>

Figure 7: ADB Ping agent logcat output

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 26 of 61

 DEDICATED INTEGRATION ENVIRONMENT

A dedicated integration and testing environment is created on the Athens Platform, used for
installation, testing and integrating the ‘Release A’ of the WP3 components, which will be part
of the 5GENESIS Facility. It is recommended that a dedicated testing environment is created by
all the platforms to facilitate reproducibility of the integration before deployment in the
production platforms. Malaga platform for example, has also created such testing environment.
The testing environment in the Athens Platform is comprised of an Openstack cloud, where all
the Linux-based components are hosted, and a VMWare ESXI2, where all the windows-based
components are hosted, as depicted in figures below. Further details can be found in appendix
1.

Figure 8. Openstack Integration Environment

Figure 9. VMWare ESXI Integration Environment

2 ESXi stands for Elastic Sky X Integrated is an enterprise server virtualization platform by VMware.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 27 of 61

 TESTING AND VALIDATION PROCESS

Based on previous experience from other projects that worked with virtualized integration
environments for 5G and NFV (i.e., 5GTANGO [12], SONATA-NFV [13], etc.) and also from the
work of ETSI NFV [14], 5GENESIS defines a template for the definition of the integration tests
that need to be executed in order to validate component integration. Table 2 depicts the
template used for the definition of integration tests.

Table 2. Test Case Template

Test Case Name Test Case id

Test Purpose Interfaces to be tested

Configuration NS to be used, configuration of Infrastructure etc

Test Tool Test tools used

Metric Measured metrics

References e.g., RFC XXX

Applicability Components that are applicable for this test

Pre-test conditions Monitoring configuration, additional metrics etc

Test sequence Step Description Result

 Step Description Result

Test Verdict Descriptive text here

Additional Resources Graphs, etc.

The integration tests that are developed for Release A are summarized in Table 3 and presented
below. The executed tests and their results, following the template above are linked next to
each test case. In order to protect information that is confidential to the project consortium,
links to private project repositories are removed.
Test case ids are assigned using the following format: int-test-xx-yy (from Integration Test),
where xx is an integer value that is assigned to the general functionality that the test covers,
and yy is an integer assigned in order to differentiate test cases that target the same
component, but a different (or greater) sub-set of the functionality. For example, int-test-02-
01 specifies the minimal functionality test that affects the ELCM, while in the future we may
specify a new int-test-02-02 that covers some extra functionality added in the next phases of
the development.

Table 3. 5GENESIS Release A integration tests

Test case id Test case name Test case description Involved
components

int-test-01-01

[Table 4]

Portal access and
login

Tests access and
authentication for
experimenters

• Coordinator

• Portal

int-test-02-01

[Table 5]

ELCM Tests the operational
status of ELCM

• Coordinator

• Portal

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 28 of 61

int-test-03-01

[Table 6]

Portal-ELCM Tests the operation of
Portal and ELCM
communication

• Coordinator

• Portal

• ELCM

int-test-04-01

[Table 7]

ELCM-OpenTAP
integration

Tests the proper
configuration of
OpenTAP and its
availability on the ELCM

• Coordinator

• Portal

• ELCM

• OpenTAP

int-test-05-01

[Table 8]

Slice Creation Tests the creation of a
slice

• Slice Mngr

• NFVO

• VIM

int-test-06-01

[Table 9]
End-to-end
experiment lifecycle
test

End to end test of the full
experimentation cycle

• Coordination
layer

• Slice Mngr

• NFVO, VIM,
WIM

More specifically, the defined test cases are the following:

Table 4. int-test-01-01: Portal Login

Test Case
Name

Portal
Login

Test Case id int-test-01-
01

Test Purpose Verify that the Portal is running, and the internal database is correctly configured

Configuration Portal hosting server assigned IP and accessible from the external networks

Test Tool Web browser

Metric n/a

References n/a

Applicability Portal

Pre-test
conditions

 Portal has been deployed and is listening for connections
on a known address. No users have connected to the Portal
before.

Test sequence Step Connect to the Portal address with a web browser The Portal's
Login page
should be
visible

 Step Click the "Register" button on the top of the page The Portal's
Register
page should
be visible

 Step Fill the required information (note the username and
password used). Click the "Register" button at the bottom
of the page.

The Portal's
Login page
should be
visible, but
this time a
"You have
been
registered"
message

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 29 of 61

appears
near the
top of the
page

 Step Fill the username and password fields with the values used
in the previous step. Click the "Sign In" button.

The user's
dashboard
is visible.

Test Verdict For newly created users the dashboard should contain an empty
table of experiments, three tabs on the top and a logout button. The
ACTIONS list should be empty. The NOTICES box may or may not
appear.

PASS

Additional
Resources

Table 5. int-test-02-01: ELCM

Test Case Name ELCM Test Case id int-test-02-01

Test Purpose Verify that the ELCM is running

Configuration ELCM hosting server assigned with IP and OpenTAP access configured

Test Tool Web browser

Metric n/a

References n/a

Applicability ELCM

Pre-test
conditions

The ELCM has been deployed and is listening at a known address. No additional
configuration has been performed

Test sequence Step Connect to the ELCM address with a web browser The ELCM
dashboard
page should
be visible

 Step Click on the "Configuration Log" and "Facility Log" The logs
should be
visible

Test Verdict Compare the contents of the logs with the reference image (in
Additional Resources. The error in the reference image is normal
and easily solved). If no additional errors appear the ELCM has
been correctly deployed

PASS

Additional
Resources

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 30 of 61

Table 6. int-test-03-01: Portal-ELCM Communication

Test Case Name Portal-ELCM
Communication

Test Case id int-test-03-01

Test Purpose Verify that the Portal and the ELCM can communicate properly

Configuration n/a

Test Tool Web browser, Text editor

Metric n/a

References n/a

Applicability Portal, ELCM

Pre-test
conditions

 Test-01-01 and Test-02-01 completed
successfully, no additional configuration
changes to the Portal or ELCM

Test sequence Step Using a text editor, edit the config.yml
file in the Portal deployment folder

 Step Modify the Host and Port values in the
Dispatcher section so that they refer to
the IP and port where the ELCM is
listening

 Step Include a new "TEST" value in the Test
Cases list (in config.yml). Save the file.

 Step Restart the Portal

 Step Connect to the Portal address with a
web browser. If necessary, log in.

The user's
dashboard should
be visible

 Step Click on the "Create Experiment" button The "CREATE
EXPERIMENT"
page should
appear. "TEST"
can be selected
under the "Test
Cases" section

 Step Give a name to the experiment and
select TEST in the Test Cases list. Leave
all other values as default. Press Add
Experiment

The user's
dashboard is
visible, but an
entry for the
newly created
experiment is on
the table

 Step Using a text editor, edit the config.yml
file in the ELCM deployment folder

 Step Modify the Host and Port values in the
Dispatcher section so that they refer to
the IP and port where the Portal is
listening. Save the file.

 Step Copy the 'test.yml' (in Additional
Resources) file to the Test Cases
subfolder of the ELCM deployment
folder.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 31 of 61

 Step Connect to the ELCM address with a
web browser. Click the "Reload Config"
and "Reload Facility" buttons

 Step Expand the "Configuration Log" and
"Facility Log". Ensure that no
unexpected errors appear.

The "1 Test Cases
defined on the
Facility: TEST."
message appears
on the Facility Log

 Step Connect to the Portal address with a
web browser. If necessary, log in.

The user's
dashboard should
be visible

 Step Click on the "Run Experiment" button A message similar
to "Success: True -
Execution Id: > -
Message: Created
execution > for
experiment >
(Id:>, User:<?>)" is
visible near the
top of the page

 Step Click on the "Executions" button A list of the
experiment
executions
appear.

 Step Wait until the experiment execution
finishes, then click the "Execution Logs"
button

The logs
generated during
the experiment
execution are
visible

Test Verdict Check the contents of the Run Log for a message with the
following content: "This is a TEST message". If it's present, the
Portal and ELCM communicate and can run experiments
correctly.

PASS

Additional
Resources

‘test.yml’ (found in the project gitlab)

Table 7. int-test-04-01: ELCM-OpenTAP- integration

Test Case Name ELCM-
OpenTAP
integration

Test Case id int-test-04-
01

Test Purpose Verify that OpenTAP is correctly configured and can be used by the ELCM

Configuration n/a

Test Tool Web browser, Text editor

Metric n/a

References n/a

Applicability ELCM, Portal, OpenTAP

Pre-test
conditions

Test-01-01 to Test-03-01 completed successfully, no additional modifications have
been performed. OpenTAP installed in the same machine as the ELCM

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 32 of 61

Test sequence Step Using a text editor, edit the config.yml file in the
ELCM directory.

 Step Modify the "Tap" section. Set "Enabled",
"OpenTap" and "EnsureClosed" to True. Modify
the "Exe", "Folder" and "Results" values if
necessary. Save the file.

 Step Save the "test.TapPlan" file (Additional Resources)
to a known folder in the ELCM/OpenTAP machine

 Step Overwrite the contents of "test.yml" (the file saved
during Test-03-01) with the new version in
Additional Resources

 Step Using a text editor, edit "test.yml". Modify the
placeholder with the full path where the
"test.TapPlan" file has been saved. Save the file.

 Step Connect to the ELCM address with a web browser.
Click the "Reload Config" and "Reload Facility"
buttons

 Step Expand the "Configuration Log" and "Facility Log".
Ensure that no unexpected errors appear.

The "1 Test
Cases defined
on the
Facility:
TEST."
message
appears on
the Facility
Log

 Step Connect to the Portal address with a web browser.
If necessary, log in or click on the Home button at
the top of the page.

The user's
dashboard
should be
visible

 Step Click on the "Run Experiment" button A message
similar to
"Success:
True -
Execution Id:
> - Message:
Created
execution >
for
experiment >
(Id:>,
User:<?>)" is
visible near
the top of the
page

 Step Click on the "Executions" button A list of the
experiment
executions
appear.

 Step Wait until the execution on top of the list finishes,
then click the "Execution Logs" button

The logs
generated

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 33 of 61

during the
experiment
execution are
visible

Test Verdict Check the contents of the Run Log for a message with the
following content: "This is a message -> n", where n can be any
number. If it's present, the ELCM can make use of OpenTAP,
sending the required external parameters.

PASS

Additional
Resources

‘test.TapPlan’ ‘test.yml’ (found in the project gitlab)

Table 8. int-test-05-1: Slice Creation

Test Case Name Slice
Creation

Test Case id int-test-05-
01

Test Purpose Verify that Slice Manager is correctly installed and configured with the South
Bound Components of the Platform

Configuration Server assigned IP and accessible by the other Northbound components

Test Tool Text Editor, curl / Swagger-UI / SM CLI tool

Metric Functional test

References n/a

Applicability Slice Manager, NFVO, VIM

Pre-test
conditions

Slice Manager is correctly installed following the instructions found in the project
gitlab- NFVO and VIM are installed with known URLs and credentials - NSDs to be
used are onboarded to the NFVO - VM images to be used are onboarded to the
VIM

Test sequence Step Using a text editor, create the
configuration files (in JSON or YAML
format) for the VIMs and NFVO to be
added in the Slice Manager, based on the
example files found in the project gitlab

 Step Add the configuration files to the Slice
Manager using (i) the SM CLI tool
katana vim add -f

vim_conf.json and katana nfvo
add -f nfvo_conf.json, (ii) the
REST APIs curl -X POST -d

@vim_conf.json

http://katanaSM:800/api/vim

and curl -X POST -d

@nfvo_conf.json

http://katanaSM:800/api/nfv

o or (iii) the Swagger-UI tool

Slice Manager should return
the UUID of each component

 Step Using a text editor, create the Network
Slice Template (in JSON or YAML format)
that describes the slice to be added,
based on the example files (found in the
project gitlab)

 Step Add the NST to the Slice Manager using
(i) the SM CLI tool katana slice

This step will trigger the slice
creation. Slice Manager

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 34 of 61

add -f nst.json, (ii) the REST APIs
curl -X POST -d @nst.json

http://katanaSM:800/api/sli

ce or (iii) the Swagger-UI tool

should return the UUID of the
new slice.

 Step Check the status of the slice using (i) the
SM CLI tool katana slice

inspect <slice_uuid>, (ii) the
REST APIs curl -X GET

http://katanaSM:800/api/sli

ce/<slice_uuid> or (iii) the
Swagger-UI tool

Slice Manager will return
information regarding the
new slice, including the status
(Init/Placement/Provisioning/
Activation/Running)

 Step Check the NFVO and VIMs involved in the
slice for the new Tenant created for the
slice and for the instantiated NSs and
VNFs in that Tenant space

 Step Check the slice deployment time using (i)
the SM CLI tool katana slice

deployment_time

<slice_uuid>, (ii) the REST APIs
curl -X GET

http://katanaSM:800/api/sli

ce/<slice_uuid>/time or (iii) the

Swagger-UI tool

Slice Manager will return a
json file with information
about the deployment time of
the slice

 Step Terminate the created slice using (i) the
SM CLI tool katana slice rm

<slice_uuid>, (ii) the REST APIs
curl -X DELETE

http://katanaSM:800/api/sli

ce/<slice_uuid> or (iii) the

Swagger-UI tool

Slice Manager will return the
status "Terminating"

 Step Check the NFVO and VIMs involved in the
slice for the successful termination of
NSs and VNFs and the deletion of the
new Tenant

Test Verdict If the Slice Manager returned the expected results with no error or warning
messages, then a new slice was created and then terminated over the configured
VIMs

Additional
Resources

‘vim.json’, ‘nfvo.json’, ‘nst.json’ (found in the project gitlab)

Table 9. int-test-06-01: End-to-end experiment lifecycle test

Test Case
Name

ELCM-Slice
Manager
Communicati
on

Test Case id int-test-06-01

Test
Purpose

Verify that the ELCM can request the creation and decommission of slices and retrieve
results from the Slice Manager. Verify that InfluxDB is correctly configured

Configurati
on

n/a

Test Tool Web browser, Text editor, SSH Client

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 35 of 61

Metric n/a

References n/a

Applicabilit
y

ELCM, Portal, Slice Manager, InfluxDB

Pre-test
conditions

int-test-01-01 to int-test-05-01 completed successfully, no additional modifications
have been performed. The Slice Manager is deployed, configured and able to deploy
the test NS, a NSD file for this test NS is available. InfluxDB is deployed, configured, and
the machine can be reached through SSH.

Test
sequence

Step Using a text editor, edit the config.yml file in
the ELCM directory.

 Step Modify the "SliceManager" section. Set the
Host and Port values to the ones where the
Slice Manager API is listening for connections.

 Step Modify the "InfluxDB" section. Set the values
required for connecting to the database where
the results will be stored. Save the file.

 Step Copy the "nsDeployment.yml" file (Additional
Resources) to the "Test Cases" subfolder of the
ELCM deployment folder

 Step Connect to the ELCM address with a web
browser. Click the "Reload Config" and "Reload
Facility" buttons

 Step Expand the "Configuration Log" and "Facility
Log". Ensure that no unexpected errors
appear.

 Step Using a text editor, edit the config.yml file in
the Portal directory.

 Step Include a new "NsDeployment" value in the
Test Cases list (in config.yml). Save the file.

 Step Restart the Portal

 Step Connect to the Portal address with a web
browser. If necessary, log in.

The user's
dashboard should
be visible

 Step Click on the "VNF/NS Management" button on
the top of the page

The (empty) VNF
and NSD
repositories are
visible

 Step Click the "Upload NS" button The "UPLOAD NS"
form should be
visible

 Step Fill the "Name" field with "TestNS", and
"Description" with "Test NS". Click the
"Browse" button and select the NSD file of the
test NS. Click "Upload NS"

The VNF and NSD
repositories are
visible, but now
"TestNS" appears

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 36 of 61

 Step Click on the "Create Experiment" button The "CREATE
EXPERIMENT" page
should appear.
"NsDeployment"
can be selected
under the "Test
Cases" section

 Step Give a name to the experiment and select
"NsDeployment" in the Test Cases list. Leave all
other values as default. Press Add Experiment

The user's
dashboard is visible,
but an entry for the
newly created
experiment is on
the table

 Step Click on the "Run Experiment" button of the
NsDeployment experiment

 Step Click on the "Executions" button of the
NsDeployment experiment

A list of the
experiment
executions appear.

 Step Wait until the execution finishes, then click the
"Execution Logs" button

The logs generated
during the
experiment
execution are
visible

 Step Look for unexpected error messages. If none
appears, click on any "Debug" button on the
logs

The DEBUG
messages are now
visible

 Step On the Run Log, look for a message similar to
Payload:

InfluxPayload['Slice_Creation_T

ime' - Tags: {'ExperimentId':

'293'} - Points: [<2019-09-18

07:27:13.491412

{'Slice_Deployment_Time':

13.8065, 'Placement_Time':

0.0032, 'Provisioning_Time':

3.6709}>]]. Numeric values will be
different.

 Step Using an SSH client, connect to the machine
hosting the InfluxDB instance.

 Step On the command prompt, run "influx" Some InfluxDB
messages appear,
ending with "Enter
an InfluxQL query"

 Step Run "use db", where db is the name of the
database that contains the ELCM results

"Using database
db" appears

 Step Run "show measurements" "Slice_Creation_Ti
me" appears in one
of the returned
lines

 Step Run "select * from Slice_Creation_Time" Some results
appear

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 37 of 61

Test Verdict If some results are visible in the last step, then the ELCM was
able to request the creation and decommissioning of a slice and
request the deployment times to the Slice Manager. Then, a
payload with these results have been successfully generated
and received by the InfluxDb instance.

PASS

Additional
Resources

‘nsDeployment.yml’ (found in the project gitlab)

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 38 of 61

 TESTING AND VALIDATION RESULTS

Based on test cases defined in previous section, validation activity has been conducted by all
platforms. The results summary are depicted in the following tables.

 Athens Platform

Table 10. The Athens Platform verification results

Test case id Test case name Test case description Result

int-test-01-01

[Table 4]

Portal access and login Tests access and
authentication for
experimenters

Pass

int-test-02-01

[Table 5]

ELCM Tests the operational
status of ELCM

Pass

int-test-03-01

[Table 6]

Portal-ELCM Tests the operation of
Portal and ELCM
communication

Pass

int-test-04-01

[Table 7]

ELCM-OpenTAP
integration

Tests the proper
configuration of OpenTAP
and its availability on the
ELCM

Pass

int-test-05-01

[Table 8]

Slice Creation Tests the creation of a
slice

Pass (MANO Layer
Components:
- OpenStack Rocky
- OSM 5 & 6
- ODL WIM

Amarisoft EMS)

int-test-06-01

[Table 9]
End-to-end
experiment lifecycle
test

End to end test of the full
experimentation cycle

Pass

The Release A of the components that are comprising the 5GENESIS Coordination Layer, i.e.
Portal, ELCM, OpenTAP and Slice Manager, have been integrated in Athens platform without
any issues, while the Testing and Validation process described in section 5 has been successfully
completed. The results of these integration tests are presented in Table 10. Further details
regarding the Coordination Layer components in Athens Platform can be found in D4.2 [15].
The 5GENESIS Coordination Layer enables the automated execution of end-to-end trials and
experimentation in the Athens Platform during the Phase 2.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 39 of 61

 Berlin Platform

Table 11. The Berlin Platform verification results

Test case id Test case name Test case description Result

int-test-01-01

[Table 4]

Portal access and login Tests access and
authentication for
experimenters

Pass

int-test-02-01

[Table 5]

ELCM Tests the operational
status of ELCM

Pass

int-test-03-01

[Table 6]

Portal-ELCM Tests the operation of
Portal and ELCM
communication

Pass

int-test-04-01

[Table 7]

ELCM-OpenTAP
integration

Tests the proper
configuration of OpenTAP
and its availability on the
ELCM

Pass

int-test-05-01

[Table 8]

Slice Creation Tests the creation of a
slice

Fail
- Initial Slice

Manager
Connection to
Openstack (ver.:
Stein) was not
successful,
resulting in
timeout error.)

int-test-06-01

[Table 9]
End-to-end
experiment lifecycle
test

End to end test of the full
experimentation cycle

Not Tested
- Because the slice

creation test was
not passed.

The 5GENESIS Portal, ELCM and OpenTAP (Release A) have been successfully deployed and
integrated in the Berlin platform. The experiments are working as expected and the experiment
results are saved in the influx DB. Additionally, Slice Manager is installed successfully. However,
the integration of slice manager with VIM and NFVO is not successful. It happens to be version
problem. Since, Berlin platform uses Openstack Stein version. Slice manager does not support
the stein release yet. Hence, the Test [int-test-05-01] is not passed. This leads to the blocking of
end-to-end test [int-test-06-01]. Currently, the main challenge to be addressed during Phase 3
is to decide the versions of Openstack and OSM to support by the Slice Manager.

 Limassol Platform

Table 12. The Limassol Platform verification results

Test case id Test case name Test case description Result

int-test-01-01

[Table 4]

Portal access and login Tests access and
authentication for
experimenters

Pass

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 40 of 61

int-test-02-01

[Table 5]

ELCM Tests the operational
status of ELCM

Pass

int-test-03-01

[Table 6]

Portal-ELCM Tests the operation of
Portal and ELCM
communication

Pass

int-test-04-01

[Table 7]

ELCM-OpenTAP
integration

Tests the proper
configuration of OpenTAP
and its availability on the
ELCM

Pass

int-test-05-01

[Table 8]

Slice Creation Tests the creation of a
slice

Pass (slice
containing only
VNFs)

int-test-06-01

[Table 9]
End-to-end
experiment lifecycle
test

End to end test of the full
experimentation cycle

In-progress

The 5GENESIS Portal, ELCM and OpenTAP (Release A) have been successfully integrated in the
Limassol platform and are operating as planned. No major issues have been identified. End-to-
end testing will take place over the next couple of months (January – March 2020). One of the
main challenges to be tackled during Phase 3 is the integration of the Slice Manager with the
underlying management components in order to be able to orchestrate an end-to-end slice
across the satellite and terrestrial segments.

 Malaga Platform

Table 13. The Malaga Platform verification results

Test case id Test case name Test case description Result

int-test-01-01

[Table 4]

Portal access and login Tests access and
authentication for
experimenters

Pass

int-test-02-01

[Table 5]

ELCM Tests the operational
status of ELCM

Pass

int-test-03-01

[Table 6]

Portal-ELCM Tests the operation of
Portal and ELCM
communication

Pass

int-test-04-01

[Table 7]

ELCM-OpenTAP
integration

Tests the proper
configuration of OpenTAP
and its availability on the
ELCM

Pass

int-test-05-01

[Table 8]

Slice Creation Tests the creation of a
slice

Pass

int-test-06-01

[Table 9]
End-to-end
experiment lifecycle
test

End to end test of the full
experimentation cycle

Pass

The 5GENESIS Portal, ELCM and OpenTAP (Release A) was integrated initially in the Malaga
platforms and the lessons learned were used to guide the rest of the consortium through their

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 41 of 61

deployment in the rest of the platforms. The main pending action for the next Release is the
support for control and configuration of gNBs and core network for supporting the automation
of the deployment of end to end slices.

 Surrey Platform

Table 14. The Surrey Platform verification results

Test case id Test case name Test case description Result

int-test-01-01

[Table 4]

Portal access and login Tests access and
authentication for
experimenters

Pass

int-test-02-01

[Table 5]

ELCM Tests the operational
status of ELCM

Pass

int-test-03-01

[Table 6]

Portal-ELCM Tests the operation of
Portal and ELCM
communication

Pass

int-test-04-01

[Table 7]

ELCM-OpenTAP
integration

Tests the proper
configuration of OpenTAP
and its availability on the
ELCM

Pass

int-test-05-01

[Table 8]

Slice Creation Tests the creation of a
slice

In-progress

int-test-06-01

[Table 9]
End-to-end
experiment lifecycle
test

End to end test of the full
experimentation cycle

In-progress

The 5GENESIS Portal, ELCM, TAP (Release A of 5GENESIS facility components) have been
successfully deployed and integrated in the Surrey platform and are operating as expected. No
major issues have been identified, however, slice-creation testing and subsequent EtE full
experimentation lifecycle testing, is still in progress, End-to-end testing will take place over the
next couple of months (January – March 2020). The results of the integration tests are
presented in Table 14.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 42 of 61

 CONCLUSIONS

This document is the first deliverable of WP5 and is used for the reporting of the integration
activities performed within the context of the work package.

The integration activities based on Release A of the 5GENESIS Facility components had followed
a well-defined methodology, which determines the basic operations from the stage of
component development until the integration of the Coordination Layer and Slice Manager in
each Platform, the guidelines for the respective tests that are used for the validation of each
step of the process, and the conventions for software versioning, as well as the production of
the respective documentation. This methodology will be used for all future releases of
5GENESIS. The integration of Release A was performed in a dedicated environment in the
Athens Platform.

The 5GENESIS Coordination Layer and Slice Manger were also briefly described, focusing on its
features, main components, and its communication with the lower layers of the architecture,
in terms of its south-bound interfaces. Its main purpose is to allow experimenters to
successfully perform a variety of experiments in the 5GENESIS Platforms.

The validation of the integration activities was performed with the use of a set of integration
tests (selected per-platform screenshots in appendix 2), following the ETSI NFV paradigm,
which allow for the validation of the operation of the individual components, their proper
communication, as well as the whole experimentation lifecycle. The results of the integration
activities per Platform at the time of the deliverable submission are also reported.

Platforms need to progress on the integration of infrastructure components such as gNBs and
5G core network. The integration of these components will be reported in D5.2, as well as the
new experimentation features offered by the Coordination platform and the slice manager. In
D5.3 we will report the user-manuals for developing the required plugins to integrate new
infrastructure components and the manuals for verticals for executing the experiments.

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 43 of 61

REFERENCES

[1] Watir – Online: http://watir.com, visited: 23.12.2019
[2] Robot – Online: http://robotframework.org , visited: 23.12.2019
[3] pyTest – Online: https://docs.pytest.org/en/latest/index.html, visited: 23.12.2019
[4] jMeter – Online: https://jmeter.apache.org, visited: 23.12.2019
[5] 5GENESIS Deliverable D3.7, “Open API, service-level functions and interfaces for

verticals”, 2019, https://5genesis.eu/wp-
content/uploads/2019/10/5GENESIS_D3.7_v1.0.pdf

[6] 5GENESIS Deliverable D2.2, “Initial overall Facility design and specifications”, 2018,
https://5genesis.eu/wp-content/uploads/2019/12/5GENESIS_D2.2_v1.0.pdf

[7] 5GENESIS Deliverable D3.15, “Experiment and Lifecycle Manager”, 2019,
http://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.15_v1.0.pdf

[8] 5GENESIS Deliverable D3.5, “Monitoring and analytics”, 2019, https://5genesis.eu/wp-
content/uploads/2019/10/5GENESIS_D3.5_v1.0.pdf

[9] 5GENESIS Deliverable D3.3, “Slice management”, 2019, https://5genesis.eu/wp-
content/uploads/2019/10/5GENESIS_D3.3_v1.0.pdf

[10] 3GPP, TR 28.801, “Study on management and orchestration of network slicing for next
generation network”, 2018

[11] OpenAPI Specification, https://swagger.io/specification/, visited 8.1.2020
[12] 5GTANGO Project, https://www.5gtango.eu/, visited 8.1.2020
[13] SONATA-NFV Platform, https://www.sonata-nfv.eu/, visited 8.1.2020
[14] ETSI GS NFV-TST 001 Network Functions Virtualisation (NFV); Pre-deployment Testing;

Report on Validation of NFV Environments and Services
[15] 5GENESIS Deliverable D4.2, “The Athens Platform (Release B)”, 2020,

https://bscw.fokus.fraunhofer.de/bscw/bscw.cgi/d3392161/5GENESIS_D4.2_v1.0.pdf

http://watir.com/
https://docs.pytest.org/en/latest/index.html
https://jmeter.apache.org/
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.7_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.7_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/12/5GENESIS_D2.2_v1.0.pdf
http://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.15_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.5_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.5_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.3_v1.0.pdf
https://5genesis.eu/wp-content/uploads/2019/10/5GENESIS_D3.3_v1.0.pdf
https://swagger.io/specification/
https://www.5gtango.eu/
https://www.sonata-nfv.eu/

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 44 of 61

ANNEX 1: ATHENS PLATFORM INTEGRATION

ENVIRONMENT

Two network subnets, namely 10.200.64.0/24 and 10.30.0.0/16, are used for the
interconnection of the components. Figure 10 depicts the network topology and the connected
instances as shown in the OpenStack dashboard. All partners involved in the integration
activities have access to the integration environment using a Virtual Private Network (VPN)
connection, while the access to each instance is achieved with the use of shared ssh keys.

Figure 10. Openstack Networks

The list of resources used in the Athens Platform are listed below, while Table 15 presents in
further detail information for each component:

• OpenStack: 12 instances, 28 VCPUs, 80GB RAM, 560GB Disk

• ESXI: 1 instance, 2 VCPUs, 16GB RAM, 64GB Disk

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 45 of 61

Table 15. Integration Components

Component Host IP Address Resources

OSM Rel 5 Openstack 10.200.64.55 VCPUs: 2
RAM: 8GB
Disk: 40GB

OSM Rel 6 Openstack 10.200.64.53 VCPUs: 2
RAM: 8GB
Disk: 40GB

WIM Openstack 10.200.64.71 VCPUs: 1
RAM: 2GB
Disk: 20GB

Amarisoft-EMS Openstack 10.200.64.72 VCPUs: 2
RAM: 2GB
Disk: 80GB

Slice Manager Openstack 10.200.64.59 VCPUs: 2
RAM: 8GB
Disk: 40GB

Prometheus Openstack 10.200.64.74 VCPUs: 2
RAM: 4GB
Disk: 30GB

InfluxDB Openstack 10.200.64.54 VCPUs: 2
RAM: 4GB
Disk: 120GB

Portal – ELCM –
OpenTAP

ESXI 10.30.0.250 VCPUs: 2
RAM: 16GB
Disk: 64GB

Iperf Agent Openstack 10.30.0.173 VCPUs: 1
RAM: 4GB
Disk: 20GB

Monroe Probe Openstack 10.200.64.81 VCPUs: 4
RAM: 4GB
Disk: 40GB

Security
Framework
Master Node

Openstack 10.200.64.63 VCPUs: 4
RAM: 16GB
Disk: 50GB

Security
Framework
Worker Node

Openstack 10.200.64.76 VCPUs: 4
RAM: 16GB
Disk: 50GB

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 46 of 61

ANNEX 2: SURREY PLATFORM INTEGRATION ACTIVITIES

(SCREENSHOTS)

Portal

ELCM

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 47 of 61

TAP

InfluxDB Running in Background

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 48 of 61

InfluxDB-iPerf Client Data

InfluxDB-iPerf Server Data

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 49 of 61

Grafana visualizing data from InfluxDB (iPerf Client & iPerf Server)

Limassol Platform Integration activities (screenshots):

Experiment configured via the Portal

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 50 of 61

Experiment monitored via the Portal

Experiment execution automated in OpenTAP

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 51 of 61

Experiment results visualized in Grafana front-end

Athens Platform Integration activities (screenshots):

Portal – ELCM – OpenTAP VM

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 52 of 61

Portal WEB UI

Slice Manager Swagger

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 53 of 61

Throughput Experiment Results in Grafana

Experiment Execution in ELCM

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 54 of 61

Berlin Platform Integration activities (screenshots):

Portal

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 55 of 61

ELCM

OpenTAP

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 56 of 61

InfluxDB

Throughput visualization in Grafana

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 57 of 61

Slice Manager Swagger API

Malaga platform integration activities (screenshots):

Portal integration in Malaga platform

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 58 of 61

iPerf, Ping and Resources agents integrated into the Malaga platform

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 59 of 61

ECLM integration in Malaga platform

Grafana integration in Malaga platform

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 60 of 61

OpenTAP integration in Malaga platform

Slice Manager integration in Malaga platform

5GENESIS D5.1 • System-level tests and verification

© 5GENESIS Consortium Page 61 of 61

InfluxDB integration in Malaga platform

