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Abstract—This paper introduces a new theoretical framework
for optimal handover procedures in heterogeneous networks by
devising the novel fractional Gittins indices, which are dynamical
priorities whose values can be statically associated to the decision
states of evolving processes representing handover alternatives.
The simple policy of activating at any time the one process
currently at highest priority optimizes the bandwidth of a
handover, if all other inactive processes remain idle. However,
numerical evidence shows that in practice this condition can
be relaxed for a wide range of handover models, because the
bandwidth actually achieved by the policy never deviates for
more than 12% from the optimally achievable bandwidth and
remains in median within a deviation of 2% from this optimum.

I. INTRODUCTION

This paper refers with handover to the procedure of transfer-
ring one communication session from one physical or logical
channel to another. With the ongoing industrial evolution [1]
toward access proliferation and densification driven by new
IoT and 5G services, as described in [2], handover procedures
need to increase efficiency significantly, as they are expected
to face much more challenging conditions than ever before.
For example, in vehicular networking users might trigger a
handover every few seconds, demanding a very good allocation
likelihood (e.g. [3]) as well as a timely switch of the downlink
data path from the serving gateway to the target node (e.g. [4]).

Although handover functionalities in next generation het-
erogeneous networks, i.e. networks under inhomogeneous
wireless access technologies and protocols, shall be widely
diverse and are to a large extent still to be defined, their
predictive control structure is usually modeled by means of a
Markovian framework. This paper analyzes optimality within
that framework and shows how a surprisingly simple policy
of associating static priorities to decision stages of handover
alternative processes can induce a near-optimal handover de-
cision, with general validity on generic handover procedures.

This paper formulates the handover decision problem as
multiarmed bandit [5], [6], which, although in its most gen-
eral formulation (said “restless”) is too complex a problem
(PSPACE complexity), work in [7] has proven that the policy
of always selecting the process (said “arm”) whose current
state bears the highest statically associated priority (Gittins
index) maximizes the total accrual of one discounted additive
utility under some relatively mild conditions, given in [8], [9].
Such index policy was shown to accrue a near-optimal lower
bound in the general restless case obtained relaxing the said
conditions (see [10], [11]). Efficient algorithms for calculating
Gittins indices have been devised for Markov chains [12].

However, handover procedures do not fit to models for
calculating Gittins indices because they are not memoryless
and the objective of their optimization is not the maximization
of one additive utility. Available literature stretches formu-
lations by lumping memory into exploding state spaces and
either deferring the question of what the utility shall be or
introducing heuristic costs like adjustments of signal-to-noise
ratios, which are not additive and deceive optimization.

The novelty presented by this paper overcomes the afore-
mentioned limitations by formulating a ratio maximization
problem and deriving a novel fractional Gittins index to obtain
priorities for semi-Markov processes, consisting of Markov
chains embedded in decision stages of stochastic processes.
Under this approach, state transitions of handover procedures
can be directly represented as embedded Markov chains
and related priorities can be statically associated to decision
stages of individual handover alternatives. A computationally
lightweight algorithm is given to calculate these priorities
introducing sojourn times per state as a second utility in the
stopping problem resolved in [13].

The contribution of this paper is twofold: Gittins indices are
ported to the semi-Markovian case for ratio optimization and
techniques based on decision thresholds are shown to concep-
tually scale for future networks: one algorithm to operatively
calculate such thresholds and one numerical analysis are given.

II. RELATED WORK

This work demonstrates the scalability of policies based
decision thresholds, which are also known in networking
communities as “sticky” policies. Starting with LTE release
10, a sticky handover procedure for access networks consisting
of low and high power nodes, has been defined in terms of cell
range extension (CRE). CRE consists of adding a bias onto the
signal strength measurements received by a low power node.
This bias must be devised to pitch a threshold for triggering
a handover, so that it trades off throughput due to weaker
signal of a low power node against congestion in accessing a
high power node. This work shows that, while such a simple
scheme is insufficient in the general case, stochastic accumu-
lation toward decision thresholds is sufficient and scalable for
achieving near-optimal decisions.

Vehicular networks are subject to higher handover failure
rates (see [3]). However, the problem of frequent handover
(e.g. [5]) is technically ill-posed: the handover is not “too”
frequent, it is excessively suboptimal and the proper frequency
shall be achieved if a near-optimal predictive policy is in-
stalled. In this paper, no distinction is made between network



layers: predictive handover refers also to handover procedures
in upper layers (see [4]), as long as they can be regarded as
embedding semi-Markov processes for control.

Optimal handovers as solution of a Markov decision pro-
cesses have been pursued in [14]. However, that work presents
the policy optimization of discrete-time Markov processes on
a cartesian product of Markovian state spaces with rates as
rewards. Unfortunately, that approach is affected by a number
of well-known and already mentioned weaknesses (e.g. non-
additive utilities, state-space explosion, exponential sojourn
times ...) and indeed the Gittins indices have been developed
exactly to prevent the state-space explosion in finding optimal
policies on a cartesian product of markovian state spaces.

The classical uniformization only transforms continuous-
time Markov chains with Poisson-distributed sojourn times
into discrete ones. While literature exists on multi-objective
multiarmed bandits (e.g. [15], [16]), authors employ a scalar-
ization, which optimizes accrual and cannot induce optimality
on a semi-Markov process. Contrarily, the solution presented
in this paper achieves optimality by building on the conver-
gence of a semi-Markov reward process, e.g. as shown in [17].

The classical discount factor can be interpreted as proba-
bility of termination of a process: both restart-in-state [18]
and elimination [13] algorithms enable a more general state-
dependent termination to be accounted into the calculation of
the indices. States of the semi-Markov processes considered in
this work may include state-dependent transitions to one non-
regenerative termination state: this is important for example
to model likelihoods of handover failures.

Since the restless bandit is PSPACE-hard [19], for large
models in general the only feasible solution is the restful
bandit one. The claim that this solution is near-optimal for
the restless bandit is a Lagrangian result based on reasoning
in [20], [21], which explains that some indices, not necessarily
the ones of the corresponding restful bandit, are optimal
or asymptotically near-optimal. However, the indices are an
efficient heuristic [10], and the restful case ones converge to
optimality as passive activity decreases. Section IV presents a
numerical analysis of this efficiency for fractional indices in
the noteworthy restless case of the switching bandit [22].

III. THEORY

This paper makes no specific assumptions on handover
procedures and regards every handover alternative as a semi-
Markov process, whose reward per state is the amount of
information (payload data) received during sojourn in that
state. The handover procedure is the realization of a selection
among several alternative processes, each representing one
evolution when active, i.e. selected as the one to carry out
the handover, or another evolution when passive, i.e. the
environment might change but the alternative is not selected.

Formally, every such process i is described by an embedded
Markov chain characterized by a state transition matrix P̄ (i)

with state rewards R(i) and sojourn times D(i). In literature,
it is common to introduce a discount factor β or termination
probability 1− β so that P̄ (i) .

= diag(β(i))P (i), with P (i) as
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Fig. 1. Simplistic example: the received signal is weak in 0©, 3©, 6©, medium
in 1©, 4©, 7© and strong in 2©, 5©, 8©. Handover is entered in 0©, 1©, 2©
and exited in 6©, 7©, 8© which represent an established link with fluctuating
signal strength. Ongoing handover with backoffs takes place in 3©, 4©, 5©.

stochastic matrix. With this notation, process i is described
by the a pair of chains {P̄ (i)

(A), R
(i)
(A), D

(i)
(A)} (active) and

{P̄ (i)
(P), R

(i)
(P), D

(i)
(P)} (passive), among which a policy switches

when selecting active and passive processes.
Obviously, the memory for rewards R(i) and intervals D(i)

is still lumped into states of P (i), but the semi-Markov model
relaxes the infeasible assumption of continuous-time Markov
chains that sojourn times must be exponentially distributed, so
only the actual states of the functionality are modeled and no
additional states must be introduces to model sojourn times.

A. Example

The application of the theory of section III is illustrated in
figure 1. The transitions among 6©, 7© and 8© model a link
whose received signal fluctuates between weak, medium and
strong strengths. The remaining transitions model a handover
under fluctuations. The alternatives consist of retaining the link
under 6©, 7© or 8©, or attempting a handover by transitioning
to 0©, 1© or 2©, depending on the received weak, medium
or strong signal. Transitions to T© model connection loss
probabilities. The graph in figure 1 is given in matrix form in
(1) and the link model is given by the submatrix P (6 : 8, 6 : 8)
with survival probabilities β(6 : 8).

P =


0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0.1 0.05 0 0 0 0 0.05 0.55 0.25
0.05 0.1 0.05 0 0 0 0.2 0.45 0.15
0 0.05 0.1 0 0 0 0.65 0.15 0.05
0 0 0 0 0 0 0.55 0.45 0
0 0 0 0 0 0 0.55 0.25 0.2
0 0 0 0 0 0 0 0.6 0.4

β =


1
1
1
0.99
0.9
0.8
0.9
0.95
0.99

 (1)

The actual stochastic transition matrix of the Markov chain
in figure 1 is

[
diag(β)P ~1−β

~0 1

]
with T© as absorbing state.

We assign average sojourn times per state as D =
[ 0.1 0.1 0.1 1 1 1 5 1 2.5 ]

T and average amount of information
received per state during sojourn as R = [ 0 0 0 0 0 0 0.1 1 10 ]

T .



Fig. 2. The region where the handover/retention ratio is grater than 1 is the
optimal one to initiate a new handover rather than to retain the current link.

For compactness of exposition, in this bandit problem the
active alternatives are the chain {P̄ , R,D} and its closed
component {P̄ (6 : 8, 6 : 8), R(6 : 8), D(6 : 8)}, the passive
ones are implied to be identity matrices with zero reward and
unitary sojourn times. Since P is not irreducible, the indices
are calculated by algorithm 1 in row 4 employing (4) rather
than (5). A variation of (5) would have been also possible.

After calculations and truncations for readability, the in-
dices for retaining the link ( 6©, 7© and 8©) turn out to be
[ 0.48 2.32 4 ]. They must be compared against the indices for
initiating a handover ( 0©, 1© and 2©), which are [ 2.13 1.85 1.09 ].
Unsurprisingly, we see that only on a weak signal state ( 6© at
0.48) it is optimal to initiate a handover ( 0© at 2.13) and carry
it on ( 3©, 4© and 5© at [ 2.18 1.90 1.15 ]) as long as the signal
remains weak ( 3© at 2.18635297).

The related question of which middle signal strength should
trigger a handover is dealt with in figure 2, showing the ratio
of the index of 1© against the index of 7© as we sweep R(7)
(information) and D(7) (time): where the ratio grows above
1, the index of 1© is greater than the index of 7© and it is
optimal to initiate a handover rather than retain the link.

B. Linear-Fractional Markov Decision Problems

This short paper can only present bare facts and rationales
for the actual calculations of optimality, delegating proofs to
a larger work and referencing [23] for a foundation.

It can be proved that the optimal bandwidth maximiza-
tion policy π among a alternatives {P̄ (i), R(i), D(i)},∀i ∈
1, . . . , a, consisting of selecting alternative π(i) when in state
i, is given by solving the linear fractional program in (2) to
calculate the row vectors x1, . . . , xa from which π is obtained,
with α :

∑
j αj = 1 as the initial state probability distribution.

This ratio maximization can be solved as linear program
through the Charnes-Cooper transformation of (3) in (4). The
solution of (4) with η = 0 and θ = 0, which is the case in
(2), can be shown to be determined by policy iteration (5) for

irreducible Markov chains. A solution as policy iteration for
non-irreducible chains is possible but more complicated.

max
x

[R(1), . . . , R(a)] · [x1, . . . , xa]T

[D(1), . . . , D(a)] · [x1, . . . , xa]T

s.t. [I − (P̄ (1))T , . . . , I − (P̄ (a))T ] ·

 xT
1

...
xT
a

 = α

π = arg max[xT1 , . . . , x
T
a ]

(2)

min
x

R̄x+ η

D̄x+ θ
s.t. Ax ≤ α

R̄
.
= [R(1), . . . , R(a)]

D̄
.
= [D(1), . . . , D(a)]

x
.
= [x1, . . . , xa]

(3)

min
y,γ

[R̄, η]

[
y
γ

]
, x = y/γ

s.t.
[
A −α
~0 −1

] [
y
γ

]
≤ 0

[D̄, θ]

[
y
γ

]
= 1

(4)

Say n the space state dimension (P (i) ∈ Rn×n,∀i), then
s is the solution of the dual of (4) determined starting the
policy evaluation with s = 0 in (5a) and iterating over value
determination in (5b) with i+1→ i until (5a) returns π(i+1) =
π(i) for some i. This policy is π sought with (2).

π(i) = arg max[t(1), . . . , t(a)]

t(i)
.
= [(R(i))T − (I − P̄ (i))s]/(D(i))T

(5a)

[
I − P̄π(i) Dπ(i)

α 0

] [
s
g

]
=

[
Rπ(i)

0

]

P̄π(i)
.
=


P̄ (π(i)(1))(1, 1) · · · P̄ (π(i)(1))(1, n)

...
...

P̄ (π(i)(n))(n, 1) · · · P̄ (π(i)(n))(n, n)


Rπ(i)

.
= [R(π(i)(1)), . . . , R(π(i)(a))]

Dπ(i)
.
= [D(π(i)(1)), . . . , D(π(i)(a))]

(5b)

C. Optimality

A peculiarity of the discounted Markov ratio decision
process is that π is dependent on α through (2), hence the
initial state can affect the optimal policy. This effect is shown
in figure 3: a start in state i, accruing R(i), D(i), induces
the total discounted rewards of alternative 2, R(2)

Σ , D
(2)
Σ , to

deliver the maximum ratio (R
(2)
Σ + R(i))/(D

(2)
Σ + D(i)).

A start in state j, accruing R(i), D(i), induces the total
discounted rewards of alternative 1 to deliver the maximum
ratio (R

(1)
Σ +R(j))/(D

(1)
Σ +D(j)).

The outcome of this effect in simple words is that, if one
controller has achieved a very high bandwidth in the past,
then it is optimal to stop quickly rather than endure at a lower
bandwidth than in the past.

However, breaking up rather than continuing cannot be
an optimality criterion in communications, hence this paper
defines as optimal a policy which maximizes the expected
bandwidth, in probabilistic terms, under the current state as
initial one and disregards the past bandwidth achieved in the
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Fig. 3. Example showing that a lower ratio R
(2)
Σ /D

(2)
Σ can lead to a higher

overall ratio (R
(2)
Σ +R(j))/(D

(2)
Σ +D(j)) depending on initial conditions.

evolution up to the current state. This definition matches the
common sense by maximizing the “future” bandwidth and
does not rule out “investing” into a transition through low
bandwidth states to achieve a high bandwidth one, as it would
be the case in a handover.

In a fully observable process, α has only one element at 1
and the others at 0, i.e. α is 1-sparse with

∑n
i=1 α(i) = 1. For

every state, the optimal policy must be calculated assuming
that state as initial and n optimal policy calculations for n
initial states are necessary to solve the decision problem.

D. Multiarmed Bandit

A multiarmed bandit in a Markovian or semi-Markovian
framework consists of a set of m Markov or semi-Markov
reward processes, with each process i selecting among the
two chains {P̄ (i)

(A), R
(i)
(A), D

(i)
(A)} and {P̄ (i)

(P), R
(i)
(P), D

(i)
(P)}.

In a conventional restful bandit, P̄(P) = I , R(P) = ~0 and
only one out of m processes is active at any time. The sought-
for solution is the policy that maximizes the accrued total
reward of the bandit until termination. Instead, as explained
aboce, in this paper the ratio of the total expected reward over
total expected time until termination shall be maximized.

P̂ (j) = ⊗ai=1P̄
(i)

R̂(j) =

a∑
i=1

~1∏i−1
j=0 nj×1 ⊗R

(i) ⊗~1∏a+1
j=i+1 nj×1

D̂(j) =

a∑
i=1

~1∏i−1
j=0 nj×1 ⊗D

(i) ⊗~1∏a+1
j=i+1 nj×1

where n0
.
= 1, na+1

.
= 1, ni : R(i) ∈ Rni

P̄ (i), R̄(i), D̄(i) =

{
P̄

(i)
(A), R

(i)
(A), D

(i)
(A), if i = j.

P̄
(i)
(P), R

(i)
(P), D

(i)
(P), otherwise.

(6)

The multiarmed bandit problem can be solved formulating
it as a conventional Markov decision process among a alter-
natives {P̂ (j), R̂(j), D̂(j)},∀j = 1, . . . , a built by formula (6)
where ⊗ is the Kronecker product.

However, if for example all P̄ (i) are n × n matrices, the
linear system in (5b) must be solved a2 times (a alternatives
in a initial states) for na + 1 equalities in na + 1 variables:
this upscaling faces rather soon a state space explosion.

E. Gittins Indices

The Gittins indices are real scalar values associated to the
states of P̄ (i) with the property that selecting the alternative
whose current state presents the highest index maximizes
the accrued total reward, so the Gittins indices constitute an
optimal policy for the conventional multiarmed bandit and do
not cause a state space explosion when upscaling the problem.

In this paper we derive a novel fractional Gittins index for
ratio maximization rather than reward maximization.

Following the restart-in-state formulation [18], the Gittins
index of state j is the maximum ratio achievable by a Markov
decision process whose alternatives at every decision stage
are to continue or restart in state j. The optimal policy can
be found by policy iteration (5), or solving (3) through (4).
Algorithm 1 describes the calculation in details employing (5)
and its distinguishing feature against other algorithms is that
it calculates the Gittins index of one specific state S without
calculating all other Gittins indices associated to all other
states of the process. However, the convergence of (5) can
be computationally intensive.
Algorithm 1: Fractional Gittins Index of Single State

Calculation by restart-in-state optimization

Input:

P̄
(i)
(A) ∀x, y : P̄

(i)
(A)(x, y) is the probability that

process i in state x transitions to state y.
R

(i)
(A) ∀x : R

(i)
(A)(x) is the average information

transported by process i in state x.
D

(i)
(A) ∀x : D

(i)
(A)(x) is the average time process i

has sojourned in state x.
S state for which the index is calculated.

1: P̄ (1), R(1), D(1) ← P̄
(i)
(A), R

(i)
(A), D

(i)
(A)

2: P̄ (2) ←

 P̄
(i)

(A)
(S,1) ... P̄

(i)

(A)
(S,n)

...
...

P̄
(i)

(A)
(S,1) ... P̄

(i)

(A)
(S,n)


R(2), D(2) ←

R
(i)

(A)
(S)

...
R

(i)

(A)
(S)

,
D

(i)

(A)
(S)

...
D

(i)

(A)
(S)


3: ∀j = 1, . . . , n : α(j)←

{
1, if j = S.

0, otherwise.
4: policy determination as policy iteration or linear program
π ← apply (5) to P̄ (1), R(1), D(1), P̄ (2), R(2), D(2), α

5: P̄π , Rπ , Dπ ← built from π as defined in (5b)
6: VR ← (I − P̄π)VR = Rπ
VD ← (I − P̄π)VD = Dπ

7: return (αT · VR)/(αT · VD)

In this paper rationales are given but proofs must be
deferred to an extended paper. Conventional literature employs
a stochastic matrix P multiplied by a scalar discount factor
β. However, algorithm 1 can be operated with a more general
discounted transition matrix P̄ (i)

(A)

.
= diag(β(i))P

(i)
(A) with β(i)

bearing one discount factor per state, which can be interpreted
as 1−β(i) probability or terminating the process. Rows 1 and
2 build the alternatives for continuing or restarting in state
S and α in row 3 is initialized to the current state, so that



the subsequent policy iteration (5) in row 4 converges to the
maximum expected ratio for evolutions from state S onward.
The more computationally intensive (4) could be employed for
more general cases. Row 6 obtains the total expected rewards
from the optimal policy and row 7 returns the ratio of the
rewards of state S as fractional Gittins index.

A faster computation is given by algorithm 2 employing
the elimination equivalence [13]. Algorithm 2 can be operated
with the same inputs as algorithm 1 and calculates all the
Gittins indices of all states from the highest to the lowest.
Algorithm 2: Fractional Gittins Indices of all States

Calculation by state elimination

Input:

P̄
(i)
(A) ∀x, y : P̄

(i)
(A)(x, y) is the probability that

process i in state x transitions to state y.
R

(i)
(A) ∀x : R

(i)
(A)(x) is the average information

transported by process i in state x.
D

(i)
(A) ∀x : D

(i)
(A)(x) is the average time process i

has sojourned in state x.
1: P,R,D ← P̄

(i)
(A), R

(i)
(A), D

(i)
(A)

G ∈ Rn, j ← {1, . . . , n}
2: while |j| > 0 do
3: q ← R/D
4: s← arg max(q)
5: c← {1, . . . , |j|} \ s
6: G (j(s))← q(s)
7: if |c| > 0 then
8: U ← P (x, y)|x∈c,y∈s

N ← (I − P (x, y)|x∈s,y∈s)−1

T ← P (x, y)|x∈s,y∈c
9: P ← P (x, y)|x∈c,y∈c + UNT

R←
(
R(x)|Tx∈c + UNR|Tx∈s

)T
D ←

(
D(x)|Tx∈c + UND|Tx∈s

)T
j ← j \ s

10: end if
11: end while
12: return G

Algorithm 2 is described here in its most general form.
However, the matrix inversion shown in row 8 can be re-
duced to a simple division by letting row 4 return only one
maximum of q rather than all maxima altogether, i.e. s has
cardinality 1 (|s| = 1). The rationale behind algorithm 2 is
that R/D > RΣ/DΣ → (R+RΣ)/(D+DΣ) > RΣ/DΣ, i.e.
if a transition leads to a state with higher immediate ratio,
it is optimal not to stop because the overall ratio will be
improved, hence only the maximum ratios in row 4 are optimal
stopping states and can be eliminated for further calculations
of lower indices. This is only true if the process is assumed to
start in the current state and accrued rewards during the past
evolution are discarded, which are exactly the assumptions
for an optimality criterion explained in section III-C. This
observation leads to an essential reuse of the algorithm in [13]
with the noteworthy feature that the termination probability in
row 3 disappears because of the ratio maximization.

As a consistency check, it can be shown that the results

(a) Minimal deviation (b) Maximal deviation

(c) Minimal deviation (d) Maximal deviation

Fig. 4. Deviations for the 100 6-states/2-alternatives models in figures 4a and
4b and for the 25 4-states/3-alternatives models in figures 4c and 4d.

(a) Median deviation (b) Median deviation

Fig. 5. Deviations for the 100 6-states/2-alternatives models in figure 5a and
for the 25 4-states/3-alternatives models in figure 5b.

returned by algorithms 1 and 2 are the same.

IV. RESULTS

The index policy induced by the fractional Gittins indices
becomes suboptimal for the restless bandit, or in simple words
when the alternative not selected keeps evolving. In this case
the optimal policy must be calculated by (5) or (4) for the
Markov decision process built by (6) and this is feasible in
general only for small space and action states (but see [21]).



For a numerical analysis, 100 small random models of
6 states with 2 alternatives and 25 ones of 4 states with
3 alternatives have been generated with characteristics that
mimic handover procedures. They bear a cost for switching
between alternatives as additional delay ranging from 0% to
133% of the average sojourn time in a handover state. Both
the average probabilities of handover failure and of connection
loss initiating a new handover are at 5% (frequent handover).

The deviation of the index policy against the optimal policy
is (ropt − rindex)/ropt, where ropt is the ratio obtained from
the optimal policy calculated on (6) as restless bandit by (5)
and rindex is the ratio obtained from the policy calculated by
algorithm 2 on every {P̄ (i)

((A)), R
(i)
((A)), D

(i)
((A))} individually, as

restful bandit assuming P̄ (i)
((P )) = I and R(i)

((P )) = ~0.
Figure 4 represents the distribution of the maximal and

minimal deviations across models when cost ranges from 0%
to 133%. A percentile just below 100% shows the highest
deviation, one just above 0% shows the minimal one. Figure
5 provides the same representation for median deviations.

The highest deviation at 12% implies that no more than
12% of the theoretically achievable maximal bandwidth is
missed by the fractional Gittins index policy. The median de-
viations never exceed 10%, but already the median of highest
deviations across all handovers (50% percentile in figure 4d)
does not exceed 2%. Median deviations across handovers are
“typically” (50% percentile in figure 5b, representing half of
the deviations for half of the handovers) below 0.5%.

V. CONCLUSION

This work has advanced the theory of Gittins indices to
the fractional case in the Markov ratio decision processes and
has employed it to define bandwidth-optimized handovers as
multiarmed bandits. Although the determination of the optimal
policy in the most general case is prohibitively (PSPACE)
complex, the novel fractional Gittins indices provide a simple
optimal solution for the restful bandit and an effective one for
the most general case of the restless bandit.

A numerical analysis on a wide range of models has shown
that in the general case the index policy induced by novel
fractional Gittins indices never misses more than 12% of
the theoretically achievable bandwidth (from 2% to 0.5% in
typical cases): although these models must be small due to
the complexity of computing their theoretical optimum, the
analysis confirms and quantifies the bound on optimality.

The framework introduced in this paper has shown the limits
of current sticky handover policies like CRE and how they can
be redefined for scaling up to large heterogeneous networks
through properly designed dynamical priorities. While band-
width is surely not the sole optimization criteria for handovers,
this work provides a framework to devise optimal stopping for
fractional Markovian multi-objective selection procedures as
employed in handovers. Although rationales for proofs have
been given in this paper, an extended paper is due to give
proofs and further characterize the reach of the theory.
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