
5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 1 of 40

Deliverable D3.15

Experiment and Lifecycle Manager
(Release A)

Editor A. Díaz Zayas (UMA)

Contributors UMA (Universidad de Málaga), TID (Telefónica
Investigación y Desarrollo), FOG (Fogus Innovations &
Services P.C.)

Version 1.0

Date October 15th, 2019

Distribution PUBLIC (PU)

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 2 of 40

List of Authors

UMA UNIVERSIDAD DE MÁLAGA

A. Díaz, B. García, P. Merino

TID TELEFÓNICA INVESTIGACIÓN Y DESARROLLO

D. Artuñedo

FOG FOGUS INNOVATIONS & SERVICES P.C.

D. Tsolkas

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 3 of 40

Disclaimer

The information, documentation and figures available in this deliverable are written by the
5GENESIS Consortium partners under EC co-financing (project H2020-ICT-815178) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 4 of 40

Copyright

Copyright © 2019 the 5GENESIS Consortium. All rights reserved.

The 5GENESIS Consortium consists of:

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” Greece

AIRBUS DS SLC France

ATHONET SRL Italy

ATOS SPAIN SA Spain

AVANTI HYLAS 2 CYPRUS LIMITED Cyprus

AYUNTAMIENTO DE MALAGA Spain

COSMOTE KINITES TILEPIKOINONIES AE Greece

EURECOM France

FOGUS INNOVATIONS & SERVICES P.C. Greece

FON TECHNOLOGY SL Spain

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG
E.V.

Germany

IHP GMBH – INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS/LEIBNIZ-
INSTITUT FUER INNOVATIVE MIKROELEKTRONIK

Germany

INFOLYSIS P.C. Greece

INSTITUTO DE TELECOMUNICACOES Portugal

INTEL DEUTSCHLAND GMBH Germany

KARLSTADS UNIVERSITET Sweden

L.M. ERICSSON LIMITED Ireland

MARAN (UK) LIMITED UK

MUNICIPALITY OF EGALEO Greece

NEMERGENT SOLUTIONS S.L. Spain

ONEACCESS France

PRIMETEL PLC Cyprus

RUNEL NGMT LTD Israel

SIMULA RESEARCH LABORATORY AS Norway

SPACE HELLAS (CYPRUS) LTD Cyprus

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 5 of 40

TELEFONICA INVESTIGACION Y DESARROLLO SA Spain

UNIVERSIDAD DE MALAGA Spain

UNIVERSITAT POLITECNICA DE VALENCIA Spain

UNIVERSITY OF SURREY UK

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the 5GENESIS Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement
of the authors of the document and all applicable portions of the copyright notice must be
clearly referenced.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 6 of 40

Version History

Rev. N Description Author Date

1.0 Release of D3.15 Almudena Díaz Zayas 15/10/2019

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 7 of 40

LIST OF ACRONYMS

Acronym Meaning

3GPP Third Generation Partnership Project

5G PPP 5G Infrastructure Public Private Partnership

API Application programming interface

CPU Central Processing Unit

CQI Channel Quality Indicator

C-RAN Cloud-RAN

CSI Channel State Information

DUT Device Under Test

E2E End To End

EaaS Experimentation as a Service

EARFCN Evolved-UTRA Absolute Radio Frequency Number

eMBB Enhanced Mobile Broadband-5G Generic Service

eNB eNodeB, evolved NodeB, LTE eq. of base station

ELCM Experiment Lifecycle Manager

EU European Union

EPC Evolved Packet Core

ETL Extract, Transform, and Load

ETSI European Telecommunications Standards Institute

EUTRAN Evolved Universal Terrestrial Access network

FDD Frequency Division Duplexing

GPS Global Positioning System

ICCID Integrated Circuit Card Identifier

ICMP Internet Control Message protocol

IMEI International Mobile Station Equipment Identity

IMSI International Mobile Subscriber Identity

IP Internet Protocol

IOT Internet of Things

KPI Key Performance Indicator

LAC Location Area Code

LTE Long-Term Evolution

LTE-A Long-Term Evolution - Advanced

MAC Medium Access Control

MANO NFV MANagement and Organisation

MCC Mobile Country Code

MCS Mission Critical Services

MCSI Modulation and Coding Scheme Index

MEC Mobile Edge Computing

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

mMTC Massive Machine Type Communications-5G Generic Service

MNC Mobile Network Code

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 8 of 40

MOCN Multiple Operator Core Network

MONROE Measuring Mobile Broadband Networks in Europe.

NFV Network Function Virtualisation

NGMN Next generation mobile networks

NMS Network Managment System

OFDM Orthogonal Frequency Division Multiplexing

PoC Proof of concept

PCRF Policy and Charging Rules Function

PDCP Packet Data Convergence Protocol (PDCP)

PDSCH Physical Downlink Shared Channel

PoP Point of Presence

POSIX Portable Operating System Interface

P-GW Packet Data Node Gateway

PLMN Public Land Mobile Network

PMI Precoding Matrix Indicator

PNF Physical Network Functions

PRB Physical Resource Block

RAN Radio Access Network

REST Representational State Transfer

RSCP Received Signal Code Power

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

RSSI Received Signal Strength Indicator

RTT Round trip time

SCPI Standard Commands for Programmable Instruments

SIM Subscriber Identity Module

SIMO Single input, multiple output

TAP Test Automation Platform

UDP User datagram Protocol

UE User Equipment

uRLLC Ultra-Reliable, Low-Latency Communications

YAML YAML Ain't Markup Language (human readable data serialization
language)

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 9 of 40

Executive Summary

The Experiment Life Cycle Manage, or ELCM, is part of the coordination layer of the 5GENESIS
architecture and is responsible of the scheduling and execution of experiments. It handles the
life cycle of an experiment from start to end, keeping the experiment in an internal queue until
all required resources for the experiment are available, using independent executors to run the
experiment and recovering the generated results.

The general codebase of the ELCM will be common to all the platforms of the 5GENESIS Facility,
however, the ELCM can be customized by each platform by modifying the contents of the
Facility Registry and the ELCM settings (information about this file can be seen in Annex 2 YML
Configuration File), modifying the generation of the Platform Specific Configuration created by
the Composer.

The ELCM has been developed from the ground up using Python[1], and uses different
interfaces for communicating with specific elements of the platforms. Additionally the ELCM
exposes an internal web administration interface developed in Flask[2].

Figure 1 The ELCM component in the Coordination Layer of the 5GENESIS reference architecture

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 10 of 40

Table of Contents

LIST OF ACRONYMS .. 7

1. INTRODUCTION .. 12

 Purpose of the document .. 12

 Document dependencies ... 12

 Structure of the document .. 12

 Target audience ... 13

2. ELCM DESIGN ... 14

 Scheduler ... 15

 Execution Engine ... 16

2.2.1. TAP as execution environment ... 16

 Composer... 17

 Other components ... 17

2.4.1. Administration interface ... 17

2.4.2. Grafana dashboard generator .. 18

3. ELCM IMPLEMENTATION .. 20

 Experiment life-cycle implementation ... 20

3.1.1. The ExperimentRun class .. 20

3.1.2. The ExecutorBase and Child classes ... 21

3.1.3. Tasks ... 21

 Composer... 22

3.2.1. Facility Registry (facility.yml) .. 22

3.2.2. The composition process .. 23

3.2.3. Grafana dashboard generation ... 24

4. ELCM NORTHBOUND AND SOUTHBOUND INTERFACES ... 26

 Portal ... 26

 Slice manager ... 26

 Network management system (NMS) .. 27

4.3.1. SSH TAP Plugin .. 27

 Monitoring probes ... 29

 Analytics module ... 30

4.5.1. InfluxDb Result Listener .. 30

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 11 of 40

4.5.2. InfluxDb Helper class .. 32

4.5.3. Multi-CSV Result Listener ... 32

5. RELEASE A SUMMARY AND FUTURE PLANS ... 33

 Scheduling based on used resources ... 33

 Dispatcher and Open APIs integration ... 33

 Privacy and Security manager integration ... 34

6. REFERENCES .. 35

ANNEX 1 TEMPORARY ELCM REST API .. 36

ANNEX 2 YML CONFIGURATION FILE (CONFIG.YML) ... 39

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 12 of 40

1. INTRODUCTION

 Purpose of the document

This deliverable describes the progress in designing and implementing the Experiment Life

Cycle Manager (ELCM) for Release A. The ELCM is the entity that performs the

management, orchestration and execution of Experiments in the 5GENESIS Platforms, and

has been developed from the ground up during Cycle A. The reader can also find details

about the different interfaces of this entity, namely the northbound interface (exposed

by the ELCM) and the southbound interfaces (used for controlling the different elements

of the 5GENESIS facilities during Release A). The actions planned for the following

integration cycles of the project, regarding the ELCM development, are included as well.

It is noted that the structure of the document serves as a placeholder for the next

deliverable of Task 3.8, as an effort to avoid repetition and include only the delta (changes

and updates) on the ELCM toward the final version of this entity (D3.16, M30).

 Document dependencies

The ELCM design and implementation is based on specifications and requirements described
in the first release of the Architecture related deliverables. Table 1 summarizes the relevance
towards the deliverables produced by WP2.

Id Document title Relevance

D2.2 [3] 5GENESIS Overall Facility Design
and Specifications

The 5GENESIS facility architecture is defined
in this document. The list of functional
components to be deployed in each testbed
is defined.

D2.3 [4] Initial planning of tests and
experimentation

This document describes the different
components of the coordination layer and
defines the sequence of interactions between
the components of the facility during an
experiment execution.

Table 1: Document dependencies

 Structure of the document

The document is structured as follows:

- Section 1, Introduction (the present section)
- Section 2, ELCM Design, describes in detail the design principles of the ELCM
- Section 3, ELCM Implementation, describes the implementation of the ELCM Release A
- Section 4, ELCM Northbound and Southbound Interfaces, presents the interfaces and

helpers that can be used by the ELCM during the execution of an experiment.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 13 of 40

- Section 5, Release A Summary and Future Plans, provides a small summary of the
features implementer for Release A, and describes the works planned for the following
cycles.

 Target audience

This document provides details about the functionality supported by the ELCM, as well as high-
level information regarding its design and implementation. However, specific details that may
only be useful while contributing to the codebase of the ELCM are not included.

Therefore, the target audience of this document are the 5GENESIS Platform administrators,
who are required to know about the general implementation aspects of the ELCM in order to
effectively configure and manage this element.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 14 of 40

2. ELCM DESIGN

The ELCM is divided in 3 main components, as well as several auxiliary elements. These
components are:

- The Scheduler is responsible for managing the execution of the experiments on a
higher level: An experiment execution is divided in 3 stages (Pre-Run, Run and Post-
Run), and the Scheduler keeps track of the execution of each of these stages for
multiple experiments in parallel.

- The Execution Engine includes the logic for managing the execution of each
experiment stage, by generating an independent Executor. The progress in each
Executor is further divided in different Tasks, which are dependent on the test case
and the equipment involved in the experiment.

- The Composer is responsible for creating the Platform Specific Configuration of the
received experiments. The configuration generated includes the Tasks to be run by
the Executors and will depend on the contents of the Facility Registry. The Facility
Registry is the entity that defines the expected behavior of the platform when
specific test cases and equipment are tested.

Figure 2 General architecture of the ELCM

The work-flow of the ELCM when an experiment execution is requested is as follows:

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 15 of 40

- The Scheduler creates a new Experiment Run instance. These objects contain all the
information about a particular execution.

- The Scheduler requests the creation of a Platform Specific Configuration to the
Composer, using the Experiment Descriptor received on the request.

- The Composer generates this configuration (including the Tasks to execute in each
Executor).

- The Scheduler queues the experiment execution, starting from the Pre-Run stage.
The execution is then handled by the Pre-Run Executor, which runs on a separate
thread and will wait until all resources are available (among other actions).

- When the Pre-Run executor finishes (which means there are available resources),
the Scheduler moves the experiment to the Run stage. Again, the real execution of
the Tasks is handled by a different thread in parallel.

- The Scheduler moves the execution to the Post-Run stage once the Run stage
finishes, and additional Tasks runs on the new Executor.

- When finished, the Scheduler removes the Experiment Run from the queue.

 Scheduler

The Scheduler is the component that manages the execution of the experiments at the Stage
level. The stages defined are:

- Pre-Run: This stage includes the experiment registration and configuration, as well
as the wait loop until all the resources required by the experiment are available.

- Run: The Run stage is composed by the task required by running the experiment,
including the instantiation and decommission of the resources, and the experiment
loop.

- Post-Run: This stage is devoted to the management of the final results and any
necessary cleanup process.

All the experiments will be kept on an internal Execution queue, where they will transition from
one of these stages to the next. When an experiment enters in one of the stages the execution
the execution is handled by an independent Executor, which is able to run in parallel alongside
any other Executor from another experiment. These Executors will run their specific tasks one
after another, until they reach completion. The scheduler will periodically check the status of
every Executor from active experiments, triggering the transition to the next stage when an
Executor has finished.

Due to the presence of the administration interface the ELCM has been developed as a web
application, which are designed to react to external requests. This approach is not compatible
with the parallel execution of experiments, which, once started, are expected to run without
external intervention. Because of this, once the web application starts, a background thread
(known as the Heartbeat) is generated, which periodically checks the status of the Experiment
Queue, moving experiments to the next stage when required and removing already finished
executions from the queue.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 16 of 40

 Execution Engine

The Execution Engine is responsible for performing the specific actions required for the
execution of a specific execution Stage. These Stages are, in turn, composed by different Tasks.
For every Stage a different Executor will handle the execution of the defined Tasks.

The Executors will run all the tasks one after another, in the order defined by the Composer,
however, multiple Executors can run in parallel. Due to this, the ELCM is able to run any number
of experiments at the same time, provided that there are enough resources in the platform for
all of them.

Each of the different Tasks may perform any action on other components of the platform. For
example, it’s possible to define a Task that calls a shell script for enabling iPerf on a remote
machine or another that executes a TAP[1][5] (Test Automation Platform) TestPlan that
activates a probe running on a mobile phone.

2.2.1. TAP as execution environment

TAP can be considered as another execution environment, in the same way as shell scripting,
but the number of additional features included in TAP (such as the result handling capabilities
or the ability to abstract different components of a Platform as Instruments) makes it ideal for
certain automation tasks that are in line with the requirements of the 5Genesis Platforms. It is,
however, not the only option, and is expected to be used along with other different execution
engines.

In order to integrate and make effective use of TAP on the 5Genesis Platforms some
considerations need to be taken into account:

- TAP Instruments must be configured beforehand: It’s not possible to easily
configure the settings outside of the TAP user interface (it’s possible to edit the xml
files that contain this configuration by hand, however, having to know the names
and acceptable values of every possible setting makes this option undesirable).

- In order to retrieve the generated results in a way that allows the Platforms to
perform additional analysis and storage, it’s important to correctly configure the
InfluxDb[6] result listener. For details about this result listener please refer to
section 4.5.1 of this deliverable.

- A TAP testplan must be generated for every kind of Task that might be executed
from the ELCM using the TAP GUI (again, editing the xml files is possible, but
extremely complex). These Testplans may contain External Parameters that can be
modified by the ELCM when executing the Testplans.

- In order to support the analysis and visualization of the results, it is necessary to tag
the generated results with information about the experiment execution as well as
the specific iteration (for test case implementation) in which they were generated.
This functionality is supported by the InfluxDb result listener, but two special test
steps must be included in the testplan in order to use this feature.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 17 of 40

Figure 3 Example TestPlan and external parameters for ELCM

Figure 3 shows an example of a testplan that includes all current the requirements for usage
on 5Genesis facilities. The first step (“Set Execution ID”) will define the global execution
identifier for the results. The actual value can be set using the “ExecutionID” external
parameter, which means that the ELCM can modify this parameter with the correct value
during the experiment execution.

The second is a default step included in TAP, however, the number of repetitions of the loop
has been externalized, so that it can be modified easily with the correct number of iterations.

“Mark Start of Iteration” is a custom step that keeps track of the current iteration number and
configures any compatible result listener (in particular the InfluxDb result listener) so that every
generated result will be tagged with the correct iteration number. The step will increase
automatically this value every time it is executed inside a loop.

The fourth step (iPerf Agent) is provided as an example of the actions that can be performed
during an iteration. In this case the step will use the remote iPerf agent detailed in Deliverable
D3.5 to start an iPerf client instance that will run for some time. Once this period finishes the
step will recover every result generated and publish them so that they are sent to the InfluxDb
database, correctly tagged, by the InfluxDb result listener. The IP address and port of the iPerf
server have also been defined as external parameters (“Host” and “Port”) so that they can easily
be customized by the ELCM or a user.

 Composer

The Composer is able to create the Platform Specific Configuration of the experiments, by using
the information available in the Facility Registry in conjunction with the Experiment Descriptor
received along with the execution request. By using this information the Composer can
generate the list of Tasks that are to be executed during the experiment run, as well as any
other configuration value needed to support the execution.

 Other components

2.4.1. Administration interface

The Administration Interface is a web application developed in Flask[2] that gives a unified
interface to platform administrators where they can review the execution status of active
experiment run, as well as checking the logs generated by every execution, including previous
ones. From this interface it’s also possible to cancel the execution of an experiment.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 18 of 40

Figure 4 ELCM Administration Interface

Figure 5 Log viewer

2.4.2. Grafana dashboard generator

The ELCM is able to request the generation of custom dashboards to a running Grafana[7]
instance where the experimenter can review the results generated by an experiment. In order
to generate the dashboard the ELCM will use the information contained in the Facility Registry,
where the platform administrators can include the definition of several Grafana panels, which
will be populated with the results generated by the experiment.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 19 of 40

Figure 6 RTT experiment dashboard generated by the ELCM

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 20 of 40

3. ELCM IMPLEMENTATION

The ELCM has been developed in Python[1] 3.7. The web application uses the Flask[2] micro-
framework as foundation. Flask is an open-source framework with a large community of
developers that provides all the standard functionality required in modern web applications.
Other components of the ELCM make use of the standard library of Python and other open-
source libraries for additional functionality.

 Experiment life-cycle implementation

This section provides some additional details about the logic and implementation of the
experiment life-cycle, from the reception of an execution request until the end of the
experiment execution.

Figure 7 Main classes on the Experiment life-cycle implementation

3.1.1. The ExperimentRun class

The instances of the ExperimentRun class is responsible for storing all the current information
about an experiment execution. It also contains references to the PreRunner, Executor, and
PostRunner, which are the entities that handle the execution of each independent stage of the
experiment.

When an experiment run execution is received, the Scheduler will create a new instance of the
ExperimentRun class, identified by a unique Id integer value. As part of the parameters required

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 21 of 40

for the creation of the ExperimentRun, is necessary to provide a dictionary that contains all the
configuration values and variables required during the execution of the experiments. This
dictionary will be known as the Params of the experiment, and will be shared with the
PreRunner, Executor and PostRunner instances for communication within the different stages.

One important value that is contained in the Params dictionary is the Descriptor. This value (the
Experiment Descriptor) contains all the information about the experiment execution, including
the test cases to run, the equipment to use among others. This descriptor is used as input for
the Composer, which will create the list of Task that will run on the different Executors and
their configuration values.

The ExperimentRun class provides methods for starting each stage independently, however,
the logic for starting the correct stage and to transition from one to the next resides in the
Experiment Queue, which is handled by the Scheduler. Likewise, the execution of each stage is
delegated to the different Executors.

3.1.2. The ExecutorBase and Child classes

The minimal logic for executing code in parallel threads is contained in the Child class. This class
includes all the functionality for managing a separate thread where it’s possible to run specific
methods, as well as the logic for handling the creation and destruction of temporal folders (so
that every thread has its own disk space where they can store intermediate results) and log
files.

ExecutorBase, that extends the Child class, provides the extra functionality that is common to
all the Executors (PreRunner, Executor and PostRunner). This includes information about when
the Executor was created, when it started and finished its execution, and the list of messages
that have been generated. These messages are separated from the full logs and provide a fast
way for tracking the progress of the execution. For example, a new message will be generated
when the Executor starts processing a new Task.

All the executors run a series of Tasks. In the case of the Pre and PostRunner this list is static
and common to all experiments, though this might change in the future. The Tasks performed
by the Executor is generated by the Composer depending on the test cases and UEs selected in
the experiment.

3.1.3. Tasks

In the context of the Experiment Life Cycle Manager, a Task is the minimal action that must be
performed in order to run an experiment, and, in general, involve delegating the execution to
an external entity. For example, a Task may be used in order to execute a TAP TestPlan that will
perform some measurements, or running a script through the command line for configuring
some equipment. Tasks may run for as long as needed, but only one Tasks can run on a given
executor at a time.

Like in the ExperimentRun class, Tasks receive a dictionary of parameters that further refine
their behavior. It’s also possible to conditionally run a task depending on the values contained
in the parameters dictionary.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 22 of 40

Tasks of the following types can be defined by the platform administrators for the execution of
Test Cases:

Type Description Parameters

Message This task will include a message in the Executor
log, using the selected severity.

Message: Text message to add to the log.

Severity: Severity level (Debug, Info, etc.).

CliExecute Execute the specified command using the
Command Line Interface. The output of the
command will be added to the Executor log.

Parameters: List of parameters (including
the script or executable name) to pass to
the command line.

CWD: (Current Working Directory) Folder
where the command will be run.

TapExecute Executes the specified TAP TestPlan, using the
selected external parameters. TAP’s output will
be added to the Executor log.

TestPlan: Path of the TestPlan to run.

Externals: Dictionary of TAP External
Parameters that will be used.

Table 2 Main Task types supported.

 Composer

The Composer is the entity that generates the Platform Specific Configuration (the set of
configuration values and Tasks that need to be run in order to perform an experiment). This
configuration (an instance of the PlatformConfiguration class) is generated by using the
Experiment Descriptor received as part of the execution request and the contents of the Facility
Registry. Additionally, the PlatformConfiguration instances also include the list of Grafana
panels that will later be used by the Dashboard Generator.

Figure 8 PlatformConfiguration and TaskDefinition classes

3.2.1. Facility Registry (facility.yml)

In the current implementation, the Facility Registry has been implemented as a YAML file that
specifies the required configuration values and actions necessary for the execution of
experiments in the 5Genesis platform. This file is divided in three main sections: TestCases, UEs
and Dashboards. The first two sections define the set of Tasks to run and their configuration
values, while the third one is used by the Dashboard Generator and will be detailed on section
2.4.2.

The TestCases and UEs section follow a similar approach: In both cases they contain a dictionary
of identifiers (in the cases of TestCases these correspond to the names of the available test
cases, while on the UEs they refer to the names of the different devices in the platform). Each

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 23 of 40

key in these dictionaries contain a list of all the Task definitions that need to be run as part of
the experiment. The following is an example of the possible contents of facility.yml

UEs:

 GalaxyS7:

 - Order: 1

 Task: Run.Message

 Config:

 Severity: Info

 Message: Using Galaxy S7

 - Order: 2

 Task: Run.TapExecute

 Config:

 TestPlan: C:/5Genesis/startUE.TapPlan

 Externals:

 Device ID: "DEVICE_ID"

 - Order: 10

 Task: Run.TapExecute

 Config:

 TestPlan: C:/5Genesis/stopUE.TapPlan

 Externals:

 Device ID: "DEVICE_ID"

TestCases:

 RTT:

 - Order: 5

 Task: Run.TapExecute

 Config:

 TestPlan: C:/5Genesis/ping.TapPlan

 Externals:

 Experiment ID: "@{ExperimentId}"

 Throughput:

 - Order: 5

 Task: Run.TapExecute

 Config:

 TestPlan: C:/5Genesis/iperf.TapPlan

 Externals:

 Experiment ID: "@{ExperimentId}"

Figure 9 Example of the contents of facility.yml

3.2.2. The composition process

The process followed by the Composer in order to generate the Platform Specific Configuration
consists in the following:

- As part of the Experiment Descriptor, the Composer will receive a list of Test Cases
and UEs that need to be involved in the experiment execution.

- For each of the UEs selected, the Composer will add to a temporary list the
information of all the tasks that belong to that particular UE. Following the example
on Figure 9, the Composer would add three tasks for a Galaxy S7, with orders 1, 2
and 10.

- For each Test Case, the Composer will add their actions to the same list. Following
the same example, it would execute ‘iperf.TapPlan’ for Throughput test cases and
‘ping.TapPlan’ for RTT ones.

- The composer will generate the final list of Tasks by sorting the temporary list
following the ‘Order’ values. If multiple tasks share the same order, they will be run

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 24 of 40

with undetermined precedence. For this reason, it’s important to define tasks that
configure and initialize the equipment with low order values, measurement tasks in
the middle and task that finalize the processes with higher ones.

This process generates the contents of the RunTasks list. This list contains all the necessary
TaskDefinitions that will be used by the Executor, however, there is a final step before the tasks
can be executed: It’s possible that the parameters of a Task contains dynamic values, for
example ‘@{ExperimentId}’. These values must be obtained during runtime, and, for this
reason, the Executor performs an expansion of all the parameters in a TaskDefinition before
the real Task is instantiated and executed.

3.2.3. Grafana dashboard generation

The third main section on the Facility Registry (Dashboards) is devoted to the generation of
Grafana[7] dashboards where the experimenters can easily review the results generated by the
experiment execution. This section follows a format similar to the TestCases section, where
each key corresponds to one of the test cases supported by the platform, but in this case it
contains the definition of all the Grafana panels that are to be generated. The values that can
be set for each panel are detailed on Table 3.

 Parameter Type Description

Type String Panel type. Available values are ‘SingleStat’ (gauges, numeric
values) and ‘Graph’ (time series graph)

Name (Optional) String Name of the panel, if not set a default name will be generated
from the Measurement and Field values

Measurement String Measurement name

Field String Field name

Unit (Optional) String Results unit

Size List[int] Size of the panel (height, width)

Position List[int] Panel position in the dashboard (x, y)

G
ra

p
h

Lines Boolean True to display as line graph, False to display as bars

Percentage Boolean Whether the graph represents a percentage or not

Interval (Optional) String Time interval of the graph. If not set, the default Grafana interval
will be used.

Si
n

gl
eS

ta
t

Gauge Boolean True to display as a gauge, false to display as a single numeric
value

MaxValue (Optional) Float Maximum expected value of the gauge, 100 if not set

MinValue (Optional) Float Minimum expected value of the gauge, 0 if not set

Table 3 Available parameters for Grafana panel definition.

By using the information contained in this section, the Dashboard generator will automatically
create a JSON description of the complete Dashboard. This description is then sent as payload
to the appropriate endpoint on the Grafana Dashboard REST API, in order to trigger the
generation of the final dashboard. The Grafana API will reply with the unique URL of the

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 25 of 40

dashboard, which will later be sent to the 5Genesis Portal, where it will be available for the
experimenter.

Figure 10 Throughtput Grafana dashboard

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 26 of 40

4. ELCM NORTHBOUND AND SOUTHBOUND INTERFACES

 Portal

Since the Dispatcher element and the Open APIs are not available during Cycle 1, the ELCM
does not make use of this element, communicating directly with the Portal in order to execute
the experiments. This communication is performed by using a temporary REST API that offers
a subset of the functionality that is projected to be available in the Open APIs.

The ELCM exposes a limited API that provides endpoints for starting the execution of
experiments, as well as for retrieving the logs generated during the experiment execution. This
endpoints are used by the Portal when an experimenter requests the execution of an
experiment, and for displaying the generated logs to the user. A short description of the public
endpoints exposed by the ELCM can be seen on Table 4 Public endpoints exposed by the ELCM
temporary APITable 4, a more complete specification that also includes internal endpoints is
available in Annex 1 Temporary ELCM REST API.

Endpoint Description

/run Starts a new experiment execution. This endpoint is accessible using
the POST method, and requires a valid Experiment Descriptor as
payload.

/experiment/<execution_id>/logs Returns the contents of the logs generated by the specified execution
ID in JSON format. This endpoint is available using the GET method.

Table 4 Public endpoints exposed by the ELCM temporary API

Additionally, the ELCM makes use of several endpoints exposed by the Portal, in order to send
updated information about the progress of the different experiment executions, so that the
user has access to a current view of the status of their experiments.

In the next cycle, this interface will be replaced by a connection with the Dispatcher element,
which will handle the communication with the Portal, with other elements in the Platform and
among different Platforms.

 Slice manager

The ELCM is able to communicate with the Slice Manager by sending requests to the REST API
exposed by this entity. For a detailed description of the Slice Manager please refer to the D3.3
deliverable. Currently, the following actions are supported by the ELCM:

- Create Slice: The ELCM is able to request the creation of a new slice by sending the
required information (encoded as a JSON) to the Slice Manager. If this action has
been completed successfully the Slice Manager will reply with the Slice ID required
in order to perform the actions below.

- Check Slice: The ELCM can request information about the status of a specific Slice
by sending the Slice ID to the appropriate endpoint on the Slice Manager. The Slice
Manager will respond with a JSON dictionary that contains runtime information
about the Slice.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 27 of 40

- Check Slice Creation Time: It’s possible to obtain the amount of time that the
creation of a Slice has taken. This information is included in the response provided
by the previous action, but this endpoint is useful for test cases that only measure
the Slice Creation Time.

- Delete Slice: The ELCM can request the deletion of a Slice (identified by the Slice ID)
to the Slice Manager.

 Network management system (NMS)

Interaction with the different components is performed by using different scripts and TAP[5]
Testplans that are executed by the different Tasks defined for each available test cases. For this
reason, the NMS does not exist as a separate entity, but is composed by the different options
that are available for use to the Platform administrators.

In order to support a vast number of heterogeneous components in a generic way, UMA has
developed a TAP plugin that is able to control different elements through SSH.

4.3.1. SSH TAP Plugin

The SSH TAP Plugin is composed by a TAP Instrument that contains all the configuration values
of the machine that will be controlled using SSH (Figure 11), and three test steps.

Figure 11 SSH Instrument configuration

The SSH instrument is able to connect using user and password, or using private keys with an
optional passphrase.

The following test steps are included in the plugin:

- Run SSH Command: This step is able to execute a command through SSH in the
configured instrument. The step can execute this command synchronously (waiting
for the command or script to end) or in the background. The step can also be
configured to run the command as administrator (if the user has the required
privileges in the target machine). The available settings for this step can be seen in
Figure 12.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 28 of 40

Figure 12 Run SSH Command step settings

- Retrieve Background SSH Command: This step can be used in order to synchronize
the test plan execution with an SSH command that was started in the background.
This step can be configured so that the command is immediately stopped if it has
not been completed, or to continue waiting. If a Timeout value has been configured
in the “Run SSH Command” it will be honored.

Figure 13 Retrieve Background SSH Command step settings

- SCP Transfer: This step can be used in order to transfer files and directories from
and to the remote machine using the SCP protocol.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 29 of 40

Figure 14 SCP Transfer step settings

 Monitoring probes

Prometheus[8] is the software selected to record the real-time metrics of the virtualize service
deployed in the 5GENESIS Facilities. The Prometheus server will monitor several independent
endpoints in real time, providing valuable information about the performance of the Facilities,
however, a long term storage of a subset of these measurements, correlated with specific
experiment executions is required in order to use this information for extracting the different
KPIs defined in the experiments. For this reason, UMA has developed a TAP plugin that can

For this reason, UMA has developed a TAP Plugin that makes use of the Prometheus HTTP API
in order to retrieve results from the configured instances based on a customizable PromQL
query. The results obtained are published as TAP results, and thus, can be received by all of the
configured TAP result listeners for further processing.

The Plugin contains two main components:

- The Prometheus Instrument, that encapsulates all the configuration values required
for connecting with a specific Prometheus instance, as well as the basic functionality
for sending requests and retrieving results using PromQL.

Figure 15 Prometheus TAP Instrument settings

- The “Publish Prometheus results” step that provides a way for performing requests
to the Prometheus instance available to the end user.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 30 of 40

Figure 16 Prometheus TAP Step

 Analytics module

In order to integrate with the Analytics module, it is possible to send all the results generated
by a TAP testplan or from tasks inside the ELCM to an InfluxDb[6] instance for later analysis.
Additionally, UMA has developed a result listener that is able to organize the results in
separated CSV files with additional metadata required by the Analytics module.

4.5.1. InfluxDb Result Listener

The InfluxDb result listener for TAP is the main entry point for the Analytics module. Once this
result listener is configured, all the results generated by every TAP testplan will be automatically
sent to the InfluxDb instance with additional metadata. The Analytics module can then retrieve
these results and extract the available KPIs from them.

Additionally, the InfluxDb Result Listener can send a selection (filtered by severity) of the log
messages generated during a test plan execution. This might be useful for debugging or for
extracting additional information from the results, correlating these values with the events
logged by TAP.

All results sent to InfluxDb must include a valid timestamp that corresponds to the moment
when the measurement has been obtained. By default, the result listener will look for a field
called “Timestamp” (case ignored) that should contain the POSIX timestamp (the amount of
time elapsed since the midnight of January 1, 1970), however, in order to support TAP test
steps that do not follow this convention, it is possible to define certain rules for obtaining the
timestamp from other fields.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 31 of 40

Figure 17 InfluxDb result listener settings

These rules can be defined by editing the “DateTime overrides” table in the result listener
settings (Figure 17). This table specifies the name of the result where the rule applies, as well
as the names of up to 2 fields (columns) that can be used to extract the timestamp. Additionally,
two “Format” columns specify the exact format of the timestamp. Examples of some possible
values for this table can be seen in Figure 18.

Figure 18 DateTime overrides

If it’s not possible to obtain a valid timestamp, the result listener will display a warning message
in the log and ignore the result.

In order to support the analysis and extraction of different KPIs from the results, these have to
include certain metadata that can be included automatically by the InfluxDb result listener. This
metadata includes a unique ID that corresponds to a specific experiment execution and (if
necessary) the iteration in which the result was generated.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 32 of 40

- The Execution ID can be specified by using the “Set Execution ID” test step. This step
only has to be run once, normally at the very beginning of a test plan, before any
result has been generated.
This ID is used in order to easily obtain all the results generated by a single
experiment execution (and only those).

- The Iteration number can be set by using the “Mark Start of Iteration” step. This
step has to run once for every iteration, so it’s normally the first step that is included
inside the loop.
The iteration number if necessary for obtaining KPIs on Test Cases where a set of
actions must be repeated for a certain number of times. This value can be used to
separate the results generated by the different iterations.

An example of a testplan where these steps are used can be seen in section 2.2.1.

4.5.2. InfluxDb Helper class

The ELCM includes the implementation of a helper class (“InfluxDb”) that is able to send
arbitrary results to an InfluxDb instance. This helper can be used to send information about the
performance of the ELCM or to extract KPIs from actions that are performed by the ELCM
without the need of using TAP Plugins. For example, the ELCM automatically logs information
about the Slice Creation Time KPI when a new slice is deployed during the execution of an
experiment.

4.5.3. Multi-CSV Result Listener

In addition to the InfluxDb result listener, UMA has developed a custom CSV result listener. This
result listener will save all generated results in different files based on the specific type of result,
as well as include the execution ID and iteration number metadata supported by the InfluxDb
result listener. This gives Platform operators an additional storage for their results, which can
be easily retrieved and processed from the CSV files without the need of accessing the InfluxDb
database.

Figure 19 Multi-CSV Result Listener settings

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 33 of 40

5. RELEASE A SUMMARY AND FUTURE PLANS

All the features detailed in the previous sections, as well as the specification and design detailed
in Section 2 has been performed as part of Task T3.8 during Cycle 1. This includes:

- The general design of the ELCM separated on the Scheduler, Composer and
Execution Engine, in Section 2.

- The separation of Experiment Executions in three different stages composed by
independent tasks (Section 2.2), and the composition process (Sections 2.3 and 3.2).

- The implementation of these design principles, along with the administration
interface of the ELCM, in Section 3.

- The development of several interfaces for communicating with other components
of the 5Genesis Platforms, and the creation of different TAP plugins outside of the
ELCM that provide the necessary means for defining the different Tasks required
during an Experiment Execution (Section 4).

Among others.

The development of the ELCM will continue in order to address any possible issue detected
during the deployment and integration of this component in the different 5GENESIS Platforms,
as well as for including any functionality required for the implementation of the different Test
Cases available for experimentation.

 Scheduling based on used resources

The current implementation of the ELCM does not take into account the resources required for
each experiment. It is currently possible to initiate the execution of several experiments that
will run in parallel while accessing the same resources (for example, the same UE or
measurement probes). The ELCM will be updated so that different experiment executions must
wait until all the required resources are released and are available for use, avoiding the
generation of incorrect results or other operational issues.

 Dispatcher and Open APIs integration

At the start of the development process it was decided that for Phase 1 the ELCM and the Portal
would communicate directly, without the use of an independent Dispatcher. This decision was
taken in order to improve the development rate of these two components (by removing the
component in the middle we were able to focus on the functionality of each app, reducing the
overhead of their communication to a minimum), and also in order to obtain more information
about the possible requirements of the Open APIs described in Deliverable D3.7.

The direct API described on section 4.1 has been used as a base for the definition of the Open
APIs that will be exposed by the Dispatcher component. Once this element is completed, the
ELCM (and Portal) will be updated, removing the existing direct API and using the Dispatcher as
the communication interface with the Portal.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 34 of 40

 Privacy and Security manager integration

Even though the Portal is able to manage the existence of multiple users, keeping the
information about available experiments and results privately, the current implementation of
the ELCM does not perform any check regarding the identity of the user that requests the
execution of an experiment or access to experiment logs through the exposed REST API.

This management will be performed by the Privacy and Security manager, however,
development of this component has not started during Phase 1. Once this element becomes
available, the ELCM (and Portal) will be updated for using the functionality provided.

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 35 of 40

6. REFERENCES

[1] Welcome to Python.org [Online], https://www.python.org/, Retrieved 09/2019
[2] Flask [Online], https://palletsprojects.com/p/flask/, Retrieved 09/2019
[3] 5GENESIS Consortium, D2.2 Initial overall facility design and specifications:

https://5genesis.eu/wp-content/uploads/2018/12/5GENESIS_D2.2_v1.0.pdf
[4] 5GENESIS Consortium, D2.3 Initial planning of tests and experimentation:

https://5genesis.eu/wp-content/uploads/2019/02/5GENESIS_D2.3_v1.0.pdf
[5] Test Automation Platform (TAP) [Online], https://www.keysight.com/en/pc-

2873415/test-automation-platform-tap, Retrieved 09/2019
[6] InfluxDB: Purpose-Built Open Source Time Series Database [Online],

https://www.influxdata.com/, Retrieved 09/2019
[7] Grafana Labs [Online], https://grafana.com/, Retrieved 09/2019
[8] Prometheus - Monitoring system & time series database [Online],

https://prometheus.io/, Retrieved 09/2019

https://www.python.org/
https://palletsprojects.com/p/flask/
https://5genesis.eu/wp-content/uploads/2018/12/5GENESIS_D2.2_v1.0.pdf
https://www.keysight.com/en/pc-2873415/test-automation-platform-tap
https://www.keysight.com/en/pc-2873415/test-automation-platform-tap
https://www.influxdata.com/
https://grafana.com/
https://prometheus.io/

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 36 of 40

ANNEX 1 TEMPORARY ELCM REST API

API endpoints:

Endpoint Method Payload Response

/run POST Experiment
Descriptor

{

ExecutionId:<int>

Success:<bool>

Message:<str>

}

Notes: Creates a new experiment execution using the data
received in the payload, and returns the execution id or some
information in case of error.

/experiment/

<int:id>/json

GET None {

Coarse:<str: Coarse execution status (PreRun,
Run, PostRun)>

Status:<str: Current executor status (Init, Waiting,
Running, Cancelled, Errored, Finished)>

PerCent:<int>

Messages:<List[str]: Collection of all the
messages generated during the execution>

}

Notes: Internal endpoint. Used for updating the information
displayed on the index view

/experiment/

<int:id>/logs

GET None {

Status: <str: [‘Success’, ‘Not Found’]

PreRun:<LogInfo>

Executor:<LogInfo>

PostRun:<PostRun>

}

Notes: Returns the logs of the three executors of the selected
experiment run, along with their severity levels (see LogInfo).

/experiment/

nextExperimentId

GET None {

NextId:<int>

}

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 37 of 40

Notes: Internal. Used to detect new executions and update
views.

Data model:

- Experiment descriptor:

{

 Id: <int>

 Name:<str>

 User: <User>

 Executions:<List[int]: Ids of the previous executions of this experiment>

 Platform:<str: Platform name (from Portal configuration)>

 TestCases:<List[str]: Names of the test cases to run>

 UEs:<Dict[Dict[str, object]]: The keys of the dictionary are the names of the UEs to use, the dictionary in the

values include extra information about the UE (currently the OS)>

 Slice:<str> [Unused]

 NSD:<str: File name of the NSD file>

 VNF_Locations:<List[VNF]> [Unused]

}

- User:

{

 Id:<int>

 UserName:<str>

 Email:<str>

 Organization:<str>

 Experiments:<List[int]: Ids of the experiments registered by the user>

}

- VNF:

{

 Id:<int>

 User:<int: Owner id>

 Name:<str>

 Description:<str>

 VNFD:<str: file name>

 Image:<str: file name>

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 38 of 40

 Location:<str: ‘Edge’ or ‘Data Network’>

}

- LogInfo:

{

 Count: { Debug: <int>, Info: <int>, Warning: <int>, Error: <int>, Critical: <int> }

 Log: <List[Tuple[str, str]]: List of pairs (<str:Severity>, <str:Message>)>

}

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 39 of 40

ANNEX 2 YML CONFIGURATION FILE (CONFIG.YML)

TempFolder: Folder that will be used for storing temporary files.

Logging:

Folder: Folder where the logs will be stored.

AppLevel: Minimum severity level to display on the application log.

LogLevel: Minimum severity level to record on the files.

Dispatcher: Location where the Dispatcher (Portal) can be reached (sections 4.1 and 5.2).

 Host:

 Port:

SliceManager: Location where the Slice Manager can be reached (section 4.2).

 Host:

 Port:

Flask: Flask specific configuration (section 2.4.1).

 SECRET_KEY: Unique secret key used for encrypting certain information

Tap: TAP specific configuration (section 2.2.1).

 Exe: TAP executable name.

 Folder: TAP installation folder.

 Results: TAP results folder.

 EnsureClosed: Whether or not to perform additional checks on the processes spawned by TAP

Grafana: Configuration values for the Grafana dashboard generation (section 2.4.2).

 Enabled:

 Host:

 Port:

 Bearer: Grafana API key

 ReportGenerator: Location of the PDF report generation

InfluxDb: InfluxDb instance configuration values (section 4.5.2).

 Host:

 Port:

 User:

 Password:

 Database:

Metadata: Additional information about the platform and metadata for InfluxDb results

5GENESIS D3.15 Experiment and Lifecycle Manager (Release A)

© 5GENESIS Consortium
Page 40 of 40

 HostIp:

 Facility:

