
Empirical Analysis of LoRaWAN Adaptive Data Rate
for Mobile Internet of Things Applications

Konstantinos Kousias
Simula Research Laboratory,

Norway
kostas@simula.no

Giuseppe Caso,
Özgü Alay

Simula Metropolitan Center for
Digital Engineering, Norway
{giuseppe,ozgu}@simula.no

Filip Lemic
Internet and Data Lab, University

of Antwerp - imec, Belgium
filip.lemic@uantwerpen.be

ABSTRACT
Built on top of the Long Range (LoRa) physical layer, the
LoRa Wide-Area Network (LoRaWAN) protocol has recently
emerged as one of the most promising Low-Power Wide-
Area Network (LPWAN) technologies, for several Internet of
Things (IoT) applications. LoRaWAN introduces the Adap-
tive Data Rate (ADR) mechanism, aiming to deliver a fair
compromise between network performance and system re-
liability. ADR performs adaptive tuning of communication
parameters, e.g., the Spreading Factor (SF), which is used to
modulate the transmitted signals. Although the performance
of ADR has been explored in conjunction with stationary
End-Devices (EDs), little is known about its suitability for
mobile IoT applications. In this paper, we investigate the per-
formance of ADR in diverse mobility scenarios by leveraging
a large amount of LoRaWAN experimental traces, collected
in the urban area of Antwerp, Belgium. Using a data-driven
statistical approach, we show that, whilst ADR enhances
network reliability and coverage in low mobility settings,
its beneficial effects decrease as mobility increases, hence
calling for possible improvement and optimization.
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1 INTRODUCTION AND MOTIVATION
Low-Power Wide-Area Networks (LPWANs)1 are emerging
as the norm technology for Internet of Things (IoT) applica-
tions requiring long-range, energy-efficient, discontinuous,
and low data rate communications [8]. According to the
1LPWANs can be divided in: I) 3GPP-standards, working in the licensed
cellular spectrum, such as Narrowband Internet of Things (NB-IoT) and
Long Term Evolution for Machines (LTE-M), and II) technologies operating
in the unlicensed spectrum, such as SigFox and Long Range (LoRa), which
exploits the LoRa Wide-Area Network (LoRaWAN) protocol stack [4].

Cisco Global Mobile Data Traffic Forecast, LPWAN connec-
tionswill constitute 14% of wireless connections by the end of
20222. IoT applications such as healthcare, industrial automa-
tion, and environmental monitoring, incorporate mobility
aspects, in which IoT devices are carried by humans or em-
bedded onto mobile objects [3, 5]. To which extent LPWANs
fit mobile IoT applications is not very well explored, to the
best of our knowledge, and requires further analysis.

LoRa operates in the 433 and 868 MHz bands in Europe,
adopts 125 kHz channels and complies with the European
regulations, which limit the emissions by enforcing a 1%
duty cycle. The signals are modulated using a Chirp Spread
Spectrum (CSS), where the Spreading Factors (SFs) (SF ∈

[7, 12]) indicate the chirp duration. SFs leverage the trade-off
between transmission rate, reliability, and coverage, with
higher SFs leading to lower data rates but increased cov-
erage. LoRaWAN provides Medium Access Control (MAC)
and higher layers functionalities. It works in a star topol-
ogy, with End-Devices (EDs) communicatingwith LoRaWAN
gateways, which are IP-connected to a central server. Uplink
messages can be received by several gateways and repeatedly
forwarded to the server.

LoRaWAN introduces Adaptive Data Rate (ADR), a mech-
anism that aims to optimize performance by dynamically
tuning EDs transmission parameters, such as SFs and trans-
mission power. The ED runs device-side ADR, but can also
enable network-assisted ADR, in which the server rules the
parameters to be adopted in future uplink transmissions. In
a nutshell, ADR triggers I) a SF increase (device-side), if the
ED is in low coverage, to improve the message delivery in
harsh radio conditions, and II) a SF decrease (network-side),
if the ED is in good coverage, leading to higher data rates
and lower power consumption [6].
Several studies have explored the performance of ADR,

mostly by simulations; variations and enhancements of the
main algorithm have been also recently proposed [1, 9].
However, extensive analysis in real-world LoRaWAN de-
ployments is currently lacking, including the study of ADR

2https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-738429.html.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html


performance under mobility scenarios. Besides qualitative
recommendations from The Things Network (TTN)3, stating
that “ADR should be enabled whenever an end device has suffi-
ciently stable RF conditions“, a thorough quantitative analysis
is still missing. An exception can be found in [7], where the
impact of mobility on a LoRaWAN ADR-enabled single link
is analyzed in both indoor and outdoor scenarios. Results
reveal a negative impact in terms of packet loss and delay,
but also call for further exploration, given that a single-link
deployment cannot address a network-wide analysis.
In this paper, we present results obtained by analyzing

the device-side ADR mechanism in a large-scale LoRaWAN
deployment in Antwerp, Belgium. In particular, we reveal
that under low mobility scenarios, the SF increase leads to
increased coverage, hence satisfying its objective; as mobil-
ity increases, we observe less beneficial effects, calling for
possible advances towards an optimized version.

2 EXPERIMENTAL DESIGN
To disclose the impact of mobility on the ADR performance,
we follow a data-driven approach.

Experimental Setup: Several LoRa EDs were mounted
on postal trucks, executing fixed routes in the city of Antwerp,
Belgium [2]. Each ED was programmed to transmit a LoRa
message of either 46 or 51 bytes every 30 seconds, with the
transmission power of 14 dBm. We refer to each measure-
ment campaign as a driving test.

Dataset Statistics: Given the above setup, the dataset
consists of 103236 measurements collected between Decem-
ber ′18 and February ′19. Each sample represents a LoRa
message successfully received and decoded by at least one
gateway. The total number of EDs is 15, although messages
are not uniformly distributed among them (i.e., more than
50% come from 4 EDs).

Dataset Features: Each sample consists of the following
features: an ED identifier (device), the SF (sf ∈ [7, 12]), the
message time-on-air (airtime ∈ [0.11, 2.30] sec), a channel
identifier4 (channel ∈ [1, 8]), the GPS coordinates of the ED
location (latitude and longitude), a hexadecimal repre-
sentation of the message (payload), and finally, a list of the
gateways that successfully received the message. Each gate-
way is associated with a unique identifier (id), a timestamp
indicating the receiving time of themessage (rx_time.time),
and power-related indicators, such as the Received Signal
Strength Indicator (RSSI) [dBm], Signal to Noise Ratio (SNR)
[dB], and Estimated Signal Power (ESP) [dBm]5.

3A LoRaWAN-based, IoT platform (https://www.thethingsnetwork.org/).
4https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html.
5ESP is defined as ESP = RSSI + SNR − 10 ∗ loд10

(
1 + 10(SNR/10)) .

Table 1: Definition of Mobility classes.
Class ID Speed Range No. Samples
Mobility 1 < 4.31 km/h 83094
Mobility 2 4.31 − 11.42 km/h 10586
Mobility 3 11.42 − 32.02 km/h 9556

Feature engineering: Since data are congregated in a sin-
gle JSON file, and driving test identifiers are not available,
we leverage rx_time.time and device as primary keys to
isolate driving tests per day. To discriminate driving tests
performed within the same day, we calculate the time dis-
tance between two consecutive messages. If the outcome
value is higher than a threshold s , we mark the beginning
of a new driving test. As the dataset consists of successfully
received messages, with no information on the transmission
time, selecting s is challenging. High thresholds can result
in miss-detection of driving tests performed in close time
proximity, while low thresholds can misinterpret a series
of lost messages with the beginning of a new driving test.
We set s = 450 sec, equal to the time observed in case 15
messages are lost in a row, that is highly unlikely in our data.

Furthermore, we estimate the average speed under which
messages were transmitted by dividing the physical distance
between two consecutive transmissions with the elapsed
time. To evaluate the physical distance between each pair of
consecutive messages, we apply the Haversine formula on
the GPS coordinates. After estimating the average speed, we
notice that 80% of the messages were transmitted with the
EDs moving slower than 4.31 km/h, slightly lower than the
average humanwalking speed (i.e. around 5 km/h)6. To better
analyze the impact of mobility on the ADR performance, we
split the dataset in three classes, based on the estimated
speeds, as reported in Table 1.

3 PERFORMANCE EVALUATION
We analyze the ADR performance under the mobility classes
in Table 1, by evaluating how the average ESP, as perceived
by the gateways, is distributed across SFs. If harsh radio con-
ditions are detected over consecutive messages, device-side
ADR will force a SF increase for the next transmissions, aim-
ing to enhance the reliability and allow message delivery
in extended coverage. Figure 1 shows the ESP distribution
across SFs for each mobility class. We observe that, for all
classes, the use of low SFs, e.g., SF = 7, is correctly mapped to
relatively high ESP values, while higher SFs match low ESP,
improving the coverage. However, the separation between
SFs becomes smoother as the mobility becomes higher, high-
lighting an increasing challenge in selecting the SF to adopt.
This also leads to a decrease of the coverage extension benefit.
6This is justified by considering the nature of the driving tests; as a matter
of fact, postal trucks make multiple stops during a drive, and their routes
likely intersect heavily trafficked areas.

https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html


Table 2: Pairwise p-values for all combinations of SF increments, across the three mobility scenarios.
7/8 7/9 7/10 7/11 7/12 8/9 8/10 8/11 8/12 9/10 9/11 9/12 10/11 10/12 11/12

Mobility 1 0 0 0 0 0 5.2e−73 5e−167 1.3e−1721.4e−1212.1e−27 1.7e−48 4.5e−44 3.8e−8 4.2e−13 3.7e−3
Mobility 2 1.3e−52 6.8e−1645.3e−2094.8e−1722e−120 e−30 1.4e−61 3.6e−69 3.5e−63 1.1e−8 8.3e−19 1.2e−26 6.7e−5 9.3e−13 8.7e−5
Mobility 3 1.2e−32 2.4e−82 2.9e−1091.8e−87 3.8e−58 1.1e−15 9.6e−41 8.3e−44 1.2e−34 1.6e−10 2.3e−18 1.9e−18 3.4e−4 3.4e−7 2.3e−2
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Figure 1: The distribution of ESP [dBm] as a function of the
SFs, for different mobility classes.

As a matter of fact, we observe that the average ESP, when
SF = 12, is −126.2, −126, and −124 dBm for the three mobility
classes, respectively. Moreover the difference between the
average ESP in SF = 7 vs. SF = 12 is also shrinking, being 16,
14, and 12 dB for Mobility 1, 2, and 3, respectively7.

To quantify to which extent ADR is affected by mobility,
we follow a statistical-based approach. One-way Analysis
of Variance (ANOVA) is a well-known tool used to assess
if there is a statistically significant difference between the
means of two or more classes8. As the requirements for para-
metric ANOVA are not fulfilled by our dataset, we select a
non-parametric test (Kruskal-Wallis)9. Table 2 illustrates the
pairwise p-values for all SF increments and mobility classes.
We observe a significant difference across the table, implicitly
showing that, the SF increase triggered by device-side ADR
significantly (and positively) affects the system performance.
However, compared to Mobility 1, an increasing trend in
the p-values is observed for Mobility 2 and 3, showing that
ADR effect keeps vanishing as mobility increases.

4 CONCLUSIONS
In this paper, we studied the performance of the LoRaWAN
device-side ADR scheme in diverse mobility scenarios, by
leveraging a dataset comprised of LoRaWAN traces collected
in the city of Antwerp, Belgium. Results indicate that the ben-
efits of ADR decrease as the ED mobility increases, hence,
leaving space for further improvement and optimization.
7We do not report the results due to space constraints, but we see the same
trend by splitting Mobility 1 in sub-classes on a percentile-based rule.
8The null hypothesis is that means of all classes are the same. If p-value is
< 0.05, the null hypothesis is rejected with a 95% Confidence Interval (CI).
9We perform pairwise comparisons for each use case with Dunn’s Test.

Future work includes a more in-depth analysis of ADR, par-
ticularly of the network-side scheme, as well as the design
of a smart algorithm that better adapts to different mobility
conditions and mobile IoT applications.
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