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Abstract—Vehicular fog computing (VFC) has emerged as a
promising solution to relieve the overload on the base station
and reduce the processing delay during the peak time. The
computation tasks can be offloaded from the base station to
vehicular fog nodes by leveraging the under-utilized computation
resources of nearby vehicles. However, the wide-area deployment
of VFC still confronts several critical challenges such as the lack
of efficient incentive and task assignment mechanisms. In this
paper, we address the above challenges and provide a solution to
minimize the network delay from a contract-matching integration
perspective. First, we propose an efficient incentive mechanism
based on contract theoretical modeling. The contract is tailored
for the unique characteristic of each vehicle type to maximize
the expected utility of the base station. Next, we transform the
task assignment problem into a two-sided matching problem
between vehicles and user equipments (UEs). The formulated
problem is solved by a pricing-based stable matching algorithm
which iteratively carries out the “propose” and “price-rising”
procedures to derive a stable matching based on the dynamically
updated preference lists. Finally, numerical results demonstrate
that significant performance improvement can be achieved by
the proposed scheme.

Index Terms—vehicular fog computing, resource allocation,
task assignment, contract theory, matching theory.

I. INTRODUCTION

W ITH the rapid advancement of information and com-
munication technologies, there arises a critical issue
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that both the data rate and computation demands grow ex-
ponentially. For example, emerging 5G applications such as
real-time video streaming, augmented reality, interactive gam-
ing, and self driving, require advanced data communication,
computation, and storage techniques to handle the complicated
data processing and storage operations [1]. This poses a new
challenge on the conventional cloud computing paradigm. It
is difficult to guarantee the stringent quality of service (QoS)
and quality of experience (QoE) requirements due to the long
distance between user equipments (UEs) and remote data
centers [2]. Edge computing which extends the computation
capability to the close proximity of UEs has been proposed as a
complementary solution [3], [4]. In [5], Cui et al. investigated
the energy minimization problem in cache-assisted mobile
edge computing (MEC), and proposed a joint caching and
offloading mechanism. Guo et al. proposed an energy-efficient
resource allocation scheme for multi-user MEC to optimally
allocate the communication and computation resources [6].
However, in order to cover a large-scale geographic area, a
massive number of high-cost energy-inefficient servers have
to be deployed and maintained, which inevitably results in
significant capital expenditure (CAPEX) and operational ex-
penditure (OPEX). Furthermore, considering the dynamically
time-varying demands, the dense deployment of servers will
lead to huge resource wastage during the off-peak time.
Therefore, how to accommodate the ever-increasing demand
in communication and computation with moderate costs via a
demand-adaptation approach remains an open problem.

An alternative choice is to exploit the under-utilized re-
sources of nearby vehicles. Particularly, future vehicles will
be equipped with more powerful onboard computers, larger-
capacity data storage units, and more advanced communication
modules for the sake of improving driving safety, convenience,
and satisfaction [7], [8]. Hence, the tremendous computa-
tion resources provided by a large group of vehicles can
be aggregated and utilized to alleviate network congestion
during the peak time without deploying additional servers. For
example, an array of parked vehicles can serve as fog node
and provide real-time computation capability augmentation
[9]. Moreover, the computation tasks of UEs can be directly
offloaded to vehicles without going through the base station
to further reduce the transmission delay. This new computing
paradigm is known as vehicular fog computing (VFC) [10],
which is a beneficial complement to edge computing and cloud
computing.
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However, despite the above-mentioned advantages, the wide
area deployment of VFC still confronts several critical chal-
lenges, which are summarized as follows.

First, there lacks an effective incentive mechanism for
vehicles to serve as fog nodes. Most of previous studies have
assumed that vehicles will share their computation resources
unconditionally [11]. This assumption is too optimistic in
practical implementation. Due to the cost incurred by task
processing, self-interested vehicles are reluctant to serve as
fog nodes unless they are well compensated. Furthermore, a
vehicle’s private information, such as the preference towards
resource sharing and the total amount of available resources,
is asymmetric, i.e., it is known by the vehicle itself but
unavailable for the base station. This is called the scenario
of information asymmetry. Therefore, it is of vital importance
to develop an incentive mechanism, which can effectively
optimize the economic benefit of the network operator or the
base station under information asymmetry.

Second, there lacks a low-complexity near-optimal task as-
signment mechanism. With the existence of multiple vehicles
and UEs, a critical challenge is how to assign the computation
tasks of UEs to vehicles such that the total network delay
can be minimized. Since UEs are owned by independent
entities, it is highly possible that they have completely different
interests and even prefer conflicting task assignment decisions.
Therefore, a computation task can be implemented if and
only if all the UEs have reached an agreement on the task
assignment decision. Otherwise, some UEs can simply achieve
a better performance by ignoring the decision. This is different
from conventional VFC task assignment problems where the
optimization is performed unilaterally [12], [13].

Accordingly, these challenges motivate us to develop a two-
stage computation resource allocation and task assignment
approach by combining contract theory and matching theory.
In the first stage, in order to motivate vehicles to share their
resources, the base station designs a contract, which specifies
the relationship between the performance, i.e., the amount of
computation resources required from a vehicle, and the reward,
i.e., the payment to the vehicle for its contribution. In the con-
tract, each distinct performance-reward association is defined
as a contract item, and a contract generally contains a great
variety of contract items. Then, the base station broadcasts the
contract, and each vehicle chooses its desired contract item to
maximize its payoff. In the second stage, the vehicles which
have signed the contract with the base station serve as fog
nodes. The task assignment problem is modeled as a two-
sided matching game, in which the UEs rank the vehicles by
considering transmission delay, task execution latency, task
size, and matching cost. A stable matching between UEs
and vehicles is derived by using the proposed pricing-based
matching approach. To the best of the authors’ knowledge,
this is the first work which investigates the computation
resource allocation and task assignment problem in VFC
from a contact-matching integration perspective. The main
contributions of this work are summarized as follows:
• Contract-based incentive mechanism design: We pro-

pose an efficient incentive mechanism based on contract
theoretical modeling. The contract is tailored for the

unique characteristic of each vehicle type to maximize the
expected utility of the base station under the constraints
of individual rationality (IR), incentive compatibility (IC),
and monotonicity. To make the problem tractable, the
total number of IR and IC constraints are firstly reduced
by exploring the relationships between adjacent vehicle
types. Then, the simplified problem is solved by using
Karush-Kuhn-Tucker (KKT) conditions. We also consider
the scenario without information asymmetry and derive
the corresponding optimal contract, which is used as a
performance benchmark.

• Matching-based computation task assignment: The task
assignment problem is intractable due to the combina-
torial nature. To reduce the complexity, we transform
the task assignment problem into a two-sided matching
problem based on the problem structure, which involves
a matching between vehicles on one side and UEs on
the other side. Then, we propose a pricing-based stable
matching algorithm to solve the task assignment problem,
which iteratively carries out the propose and price-rising
procedures to derive a stable matching based on the
dynamically updated preference lists.

• Theoretical analysis and performance validation: We
provide a comprehensive theoretical analysis on con-
tract feasibility, matching convergence, matching stabil-
ity, matching optimality, and computation complexity.
The contract feasibility and efficiency as well as the
network delay performance are evaluated by conducting
a series of simulations under different scenarios. Nu-
merical results demonstrate that the proposed algorithm
can approach the optimal performance of the exhaustive
searching algorithm, while the computation complexity is
several orders of magnitude lower.

The remaining parts of the paper are summarized as follows.
A comprehensive review of related works is provided in
Section II. The overall system model is introduced in Section
III. Section IV presents the contract-based incentive mech-
anism design. Section V elaborates the matching-based task
assignment mechanism. Section VI provides the simulation
results. The conclusion is given in Section VII.

II. RELATED WORKS

With the rapid proliferation of vehicles, the studies on
VFC have received considerable attentions from both industry
and academia. Hou et al. investigated the feasibility of VFC
and provided a quantitative analysis among capacity, vehicle
mobility, and connectivity [10]. Feng et al. proposed a novel
framework named autonomous vehicular edge (AVE) to in-
crease the computation capabilities of vehicles in a decentral-
ized manner [14]. In [15], Satyanarayanan et al. explored how
to build a shared real-time information system for vehicles
to enable situational awareness based on the convergence of
three technology trends. Xiao et al. investigated the feasibility
of VFC, and developed a cost-effective on-demand VFC
architecture by leveraging the mobility of vehicles [16]. In
[17], Zhu et al. proposed a low-latency quality-enhanced task
assignment solution named fog following me (Folo) for VFC.
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The task assignment across stationary and mobile fog nodes
is formulated as a joint optimization problem, and solved
by exploiting mixed integer linear programming. As we can
observe, these works rely on a common assumption that all
the vehicles are willing to act as fog nodes, and the incentive
issues have been neglected.

There exist some works which have already investigated
the incentive design problem in cloud/edge/fog computing. In
[18], Luong et al. proposed a comprehensive literature survey
of pricing-based incentive mechanisms for resource allocation
in cloud-enabled wireless networks. Liu et al. considered
the computation offloading problem in MEC, and provided
a Stackelberg game-based pricing scheme to stimulate edge
server owners while optimizing the utility of the cloud service
operator [19]. In [20], Su et al. developed a Stackelberg
game-based pricing scheme to coordinate the competition and
cooperation among moving vehicles, parked vehicles, and road
side unit (RSU). In the Stackelberg game, the leaders, i.e.,
the RSU and parking area, have the perfect knowledge of
the moving vehicles and content delivery costs. In addition,
they also know each side’s optimal strategy. However, most
of current works rely on symmetric information, and are not
applicable to the scenario of information asymmetry.

Contract theory is regarded as a powerful tool from microe-
conomics to cope with information asymmetry. A vehicle’s
private information can be effectively elicited because the
contract item is incentive compatible, i.e., the payoff of a
vehicle is maximized if and only if it selects the contract item
designed for its type. Contract theory has already been widely
applied in the optimization of wireless networks. In [21], Du
et al. proposed a contract-based user association approach
for traffic offloading in software-defined heterogeneous net-
works. Xu et al. developed an energy-efficient relay selection
scheme by exploiting contract theoretical modeling [22]. Other
application scenarios include cognitive radios [23], mobile
crowdsourcing [24], and small-cell caching systems [25].
Several previous works have already compared Stackelberg
game with contract theory. In [26], Duan et al. investigated the
incentive mechanism design for smartphone collaboration. The
Stackelberg game is used to model the cooperation game for
data acquisition, where the shared tasks and the corresponding
rewards for collaborators are homogeneous. In comparison, the
contract theory is used to motivate cooperation in distributed
computing, where computation efficiency and task amount for
collaborators heterogeneous. In [24], Liu et al. demonstrated
that the contract theory provides better profit for the base
station than the Stackelberg game due to the fact that the
contract is completely designed by the base station, which
acts as a monopolist in the market. In the Stackelberg game,
since the information is symmetric, the followers also know
the action of the leader, and can optimize their payoffs
accordingly.

Another critical challenge in VFC is how to assign the
computation tasks to vehicular fog nodes. Numerous studies
have addressed the task assignment problem with different
optimization approaches, e.g., matching theory [1], [27], coali-
tional game [28], Stackelberg game [29], and multi-player non-
cooperative game [30]. Compared to other solutions, matching

Fig. 1. The VFC framework.

theory is more suitable to handle the heterogeneous prefer-
ences of UEs. Specifically, the task assignment problem can
be modeled as a two-sided matching game between UEs and
vehicles, and solved in a self-organizing and self-optimizing
fashion. Matching theory has already been employed to ad-
dress various combinatorial problems with mutual preferences
in Internet of things (IoT) fog networks [31], device-to-device
networks [12], and vehicular content distribution networks [1],
etc.

Based on the above literature review, we can conclude
that there lacks a uniform framework to address the resource
allocation and task assignment optimization problem in VFC
from a contract-matching integration perspective. Specifically,
how to combine these two powerful tools to minimize the
overall network delay requires further investigation.

III. SYSTEM MODEL

The VFC framework is shown in Fig. 1. In each cell,
there exists a base station which takes charge of intra-cell
communication resource coordination, computation resource
allocation and task assignment. During the peak time when
the base station is overwhelmed by the incoming computation
demands, a group of vehicles are employed to act as fog
nodes and relieve the overload problem via task offloading.
Any vehicle with idle computation resources is able to act
as a fog node by sharing its resources for task processing.
With a properly-designed incentive mechanism, each vehicle
can actively adjust the amount of resources to be shared in
order to maximize its individual payoff. The details for how
to design the incentive mechanism will be illustrated in Section
IV.
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In the same cell, there also exist numerous UEs. Each
UE generates a series of computation tasks, each of which
can be either processed by the base station or offloaded
to a vehicular fog node. The details for how to model the
interactions between UEs and vehicles, and how to derive a
low-complexity sub-optimal task assignment solution will be
illustrated in Section V.

For the sake of simplicity, we adopt a time-slot model in
which the time is slotted into discrete intervals [22]. The opti-
mization process is carried out in a slot-by-slot fashion. The set
of vehicles and the set of UEs within the coverage of the base
station remain fixed within each slot, and vary across different
slots, which are denoted as VM = {V1, · · · , Vm, · · · , VM} and
UN = {U1, · · · , Un, · · · , UN}, respectively. During each slot,
it is assumed that each UE, e.g., Un, has a computation task to
be processed. The key attributes of the task can be described by
a triplet {Dn, Cn, τn}, where Dn represents the task data size,
Cn is the required computation resource, i.e., the computation
size, and τn represents the delay constraint.

Remark 1. The system model considered in this work can
also be extended to the scenario that a UE has multiple
computation tasks to be processed per slot. In this case, the
multiple tasks can be aggregated and considered as a single
task with larger data size and higher computation demand. If
UE Un has no task, we can simply set Dn = Cn = τn = 0.

Remark 2. Our model is different from the conventional
MEC model where UEs offload their tasks to an edge server.
First, the location of the edge server is fixed, while both the fog
nodes and UEs considered in our model can be mobile. Sec-
ond, the incentive issues have been largely neglected in MEC
since both the communication and computation infrastructures
are deployed and owned by the same network operator. How-
ever, in VFC where vehicles are owned by individuals, the
incentive issues must be taken into consideration. Third, in
the MEC model, UEs within the same cell can only connect
to one or at most two base stations. In comparison, due to
the high density of vehicles, a UE may be surrounded by
multiple vehicles, and the candidate vehicles of different UEs
are overlapped with each other. Last but not least, the MEC
model is more suitable for the centralized task assignment
scenario where the tasks of all the UEs within the same cell
are assigned to the same edge server. Our model emphasizes
on the decentralized task assignment scenario where the tasks
of UEs are assigned to a group of distributed vehicles.

IV. CONTRACT-BASED INCENTIVE MECHANISM DESIGN

In this section, we propose a contract-based incentive mech-
anism to motive vehicles to share their computation resources
for task offloading. First, we introduce the vehicle type model.
Second, the utility functions of the base station and vehicles
are introduced, and the resource allocation problem is formu-
lated. Third, we elaborate how to derive the optimal contract
under information asymmetry. Finally, the optimal contract
design without information asymmetry is provided.

A. Vehicle Type Modeling
The preference of a vehicle towards resource sharing is

quantified as its vehicle type. A vehicle with a higher type

is more willing to share its resources and serve as a fog node
compared to a vehicle with a lower type. Thus, it is intuitive
for the base station to employ higher-type vehicles. Since the
number of vehicles in a cell is usually finite, the set of vehicle
types belongs to a discrete and finite space. The vehicle type
is defined as follows:

Definition 1. (Vehicle Type): The M vehicles in set VM can
be sorted in an ascending order based on their preferences
and classified into K types. Denote the set of vehicle types as
K = {1, · · · , k, · · · ,K}, and denote the set of corresponding
resource sharing capability as Θ = {θ1, · · · , θk, · · · , θK},
which is given by

θ1 < · · · < θk < · · · < θK , k ∈ K (1)

Then, we show how to derive the explicit expression of the
vehicle type. For vehicle Vm, denote Cm as the computation
size of the local task to be processed. Due to resource sharing,
the processing delay will be increased, which is given by

∆τm =
Cm

δm,0 − δm
− Cm
δm,0

≤ ∆τm,max, (2)

where δm,0 and δm represent the total available computation
resource and the shared resource, respectively. The inequality
specifies that the increased delay should be less than or equal
to a threshold ∆τm,max to satisfy QoS or QoE requirements.

Through some manipulations of (2), we can derive the upper
bound of δm as

δm ≤
δ2m,0∆τm,max

δm,0∆τm,max + Cm
= δupperm , (3)

where δupperm is the maximum amount of resources that can
be shared. We assume that δupperm falls into a continues closed
interval [δmin, δmax], where δmin and δmax represent the min-
imum and maximum values of δupperm ,∀m ∈M, respectively.
Then, the interval is divided into K subintervals with the same
length, and the lower bound of the k-th subinterval is defined
as θk, which is given by

θk = δmin +
k − 1

K
(δmax − δmin). (4)

The type of vehicle Vm is said to be k if θk ≤ δupperm < θk+1.
Remark 3. From (4), we can infer that θk increases with

δm,0 and ∆τm,max, and decreases with Cm. This definition
is consistent with practical situations. For example, a vehicle
with light local tasks and abundant idle resources can share
more resources. As a result, it can gain a higher profit and
thus has a higher preference towards resource sharing.

In the scenario of information asymmetry, the base station
does not know the precise information of each vehicle’s
type. Instead, only the statistical knowledge of the vehicle
type is available via long term measurements or historical
observations. We assume that the base station only knows
that there are a total of K types of vehicles and each vehicle
Vm ∈ VM belongs to type k with the same probability λk,
i.e.,

∑K
k=1 λk = 1.
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B. Contract Formulation

Instead of offering the same contract item to vehicles
with different types, the base station can design up to K
contract items for K vehicle types, i.e., one contract item
per type. For instance, the contract item dedicated for type k
vehicle is denoted as (δk, πk), where δk denotes the required
computation resources, and πk is the corresponding reward.
The whole contract is denoted as C = {(δk, πk),∀k ∈ K}.

Assuming the total amount of computation tasks that can
be processed by the base station during a time interval T is
CBS , we have CBS = δBST . Here, δBS is the computation
capability of the base station per second. We assume that the
benefit of the base station is positively related to the reduced
delay, which is valid since the motivation of exploiting VFC is
to reduce the computation delay. For the purpose of simplicity,
the linear function is utilized, which has also been employed in
numerous works [32], [33]. Nevertheless, the proposed scheme
can also be extended to more complicated scenarios with
nonlinear functions. By signing the contract item (δk, πk) with
type k vehicle, the benefit of the base station is given by

RBS(δk) = rBS(
CBS
δBS

− CBS
δk + δBS

)

= rBST
δk

δBS + δk
,

(5)

where rBS is the unit benefit brought by the reduced delay. It
is noted that although (5) is defined as a linear function of the
reduced delay, it is actually a concave function of the variable
δk, which is nonlinear.

With K types and M vehicles, the expected utility of the
base station is calculated as

UBS({δk}, {πk}) = M

K∑
k=1

λk[RBS(δk)− πk]. (6)

Remark 4. A contract item (δk = 0, πk = 0) means that
type k vehicle has no desire to share its resources. Moreover,
the contract item must also guarantee that the utility of the base
station is nonnegative, i.e., RBS(δk)−πk ≥ 0. Otherwise, the
base station has no incentive to sign the contract with type k
vehicle.

The utility function of type k vehicle which accepts the
contract item (δk, πk) is given by

UVk (δk, πk) = θkπk − δk, (7)

where θk characterize the weight of πk to type k vehicle.
A higher-type vehicle has a larger weight due to its higher
preference towards resource sharing.

The expected social welfare is the total sum utility of the
base station and the M vehicles, which is given by

Us({δk}, {πk}) = UBS({δk}, {πk}) +M

K∑
k=1

λkU
V
k (δk, πk).

(8)

The objective of the base station is to maximize its utility
under the scenario of asymmetric information via the optimiza-

tion of each contract item. The corresponding optimization
problem is formulated as

P1 : max
({δk},{πk})

UBS({δk}, {πk})

s.t. C1 : θkπk − δk ≥ 0,∀k ∈ K, (IR)

C2 : θkπk − δk > θkπk′ − δk′ ,
∀k, k′ ∈ K, k 6= k′, (IC)

C3 : 0 ≤ δ1 < · · · < δk < · · · < δK ,∀k ∈ K,
C4 : δk ≤ θk,∀k ∈ K, (9)

where C1, C2, and C3 represent the IR, IC, and monotonicity
constraints, respectively. C4 represents the upper bound of δk.

Definition 2. The IR, IC, and monotonicity constraints are
defined as follows:

• Individual rationality (IR) constraint: Type k vehicle,
∀k ∈ K, will get a nonnegative payoff if it selects the
contract item (δk, πk).

• Incentive compatibility (IC) constraint: The IC con-
straint ensures the self-revealing property of the contract.
For instance, type k vehicle, ∀k ∈ K, will get the
maximum payoff if and only if it selects the contract item
(δk, πk) designed for its own type.

• Monotonicity constraint: The reward of type k vehicle,
∀k ∈ K, should be higher than that of type k−1 vehicle,
and lower than that of type k + 1 vehicle.

Based on the IR, IC, and monotonicity constraints, we have

Lemma 1. For any k, k′ ∈ K, if θk > θk′ , then δk > δk′ and
πk > πk′ . πk = πk′ and δk = δk′ if and only if θk = θk′ .

Lemma 2. For any (δk, πk) ∈ C, the following inequalities
hold

0 ≤ π1 ≤ · · · ≤ πk ≤ · · · ≤ πK ,
0 ≤ δ1 ≤ · · · ≤ δk ≤ · · · ≤ δK ,
0 ≤ UV1 ≤ · · · ≤ UVk ≤ · · · ≤ UVK . (10)

Proof: A similar proof of Lemma 1 and Lemma 2 can
be found in [34]. The details are omitted here due to space
limitation.

Based on Lemma 1 and Lemma 2, we define the sufficient
and necessary conditions for contract feasibility.

Theorem 1. Contract feasibility: The contract C =
{(δk, πk),∀k ∈ K} is feasible if and only if all the following
conditions are satisfied:

• 0 ≤ π1 ≤ · · · ≤ πk ≤ · · · ≤ πK and 0 ≤ δ1 ≤ · · · ≤
δk ≤ · · · ≤ δK;

• θ1π1 − δ1 ≥ 0;
• For any k ∈ {2, · · · ,K}, δk−1 + θk−1(πk − πk−1) ≤
δk ≤ δk−1 + θk(πk − πk−1).

Proof: The detailed proof of Theorem 1 is omitted here
due to space limitation. A similar proof can be found in
Appendix D of [23].
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C. Optimal Contract Design under Information Asymmetry

Problem P1 involves K IR constraints and K(K − 1)
IC constraints. To provide a tractable solution, the following
procedures are carried out to simplify the problem.

Step 1: IR Constraints Elimination
For type k vehicle, k ∈ K, k 6= 1, we can derive

UVk ≥ UVk−1 ≥ UV1 ≥ 0, (11)

where the first inequality is due to the IC constraint, the second
inequality is based on Lemma 2, and the third inequality is
due to the IR constraint. Hence, the IR constraint of type k
vehicle holds automatically as long as the IR constraint of type
1 vehicle is guaranteed.

Step 2: IC Constraints Elimination
We define the IC constraints between type k and type

k′, k′ ∈ {1, · · · , k − 1}, as downward incentive constraints
(DICs). Similarly, the IC constraints between type k and type
k′′, k′′ ∈ {k + 1, · · · ,K}, are defined as upward incentive
constraints (UICs). In the following, we show that both the
DICs and UICs can be reduced.

We consider three adjacent vehicle types, i.e., θk−1 < θk <
θk+1, which satisfy

θk+1πk+1 − δk+1 ≥ θk+1πk − δk, (12)
θkπk − δk ≥ θkπk−1 − δk−1, (13)

where (12) denotes the DIC between type k + 1 and k, and
(13) denotes the DIC between type k and k − 1.

By combining πk+1 ≥ πk ≥ πk−1, we have

θk+1πk+1 − δk+1 ≥ θk+1πk−1 − δk−1. (14)

Therefore, if the DIC between type k + 1 and k holds, then
the DIC between type k + 1 and k − 1 also holds. The DIC
constraints can be extended downward from type k−1 to type
1, which are given by

θk+1πk+1 − δk+1 ≥ θk+1πk−1 − δk−1
≥ · · ·
≥ θk+1π1 − δ1.

(15)

Thus, we demonstrate that if the DICs between adjacent
types hold, then all the DICs hold automatically. Similarly,
we can demonstrate that if the UICs between adjacent types
hold, then all the UICs hold automatically.

Based on the above analysis, the K IR constraints and
K(K − 1) IC constraints can be reduced to 1 and K − 1,
respectively. Furthermore, we have the following properties:

Proposition 1. In order to maximize the utility of the base
station, the optimal contract item for type 1 vehicle, i.e.,
(δ∗1 , π

∗
1), must enforce

UV1 (δ∗1 , π
∗
1) = θ1π

∗
1 − δ∗1 = 0. (16)

Proof: The proof is based on reduction to absurdity.
Assuming θ1π

∗
1 − δ∗1 > 0, then the base station can improve

its own utility by either decreasing π∗1 or increasing δ∗1 until
θ1π̂1 − δ̂1 = 0 while simultaneously satisfying the conditions
of contract feasibility. Then, we have

RBS(δ̂1)− π̂1 > RBS(δ∗1)− π∗1 , (17)

which contradicts with the assumption that (δ∗1 , π
∗
1) is the

optimal contract item. Hence, we must have θ1π∗1 − δ∗1 = 0.
This completes the proof of Proposition 1.

Proposition 2. The optimal contract item for any type k
vehicle (δ∗k, π

∗
k), k = 2, · · · ,K, satisfies the following equality

condition:

δ∗k = δ∗k−1 + θk(π∗k − π∗k−1). (18)

Proof: From the IC constraint, we have

δ∗k ≤ δ∗k−1 + θk(π∗k − π∗k−1), k = 2, · · · ,K (19)

Then, the base station can further improve its own utility by
either decreasing π∗k or increasing δ∗k until the equality holds,
which does not violate the conditions of contract feasibility.
This completes the proof of Proposition 2.

Thus, based on constraint elimination, Proposition 1 and
Proposition 2, P1 can be rewritten as

P2 : max
({δk},{πk})

UBS({δk}, {πk}),

s.t. C1 : θ1π1 − δ1 = 0, (IR)

C2 : δk = δk−1 + θk(πk − πk−1), 2 ≤ k ≤ K, (IC)

C3, C4,∀k ∈ K. (20)

We can easily prove that P2 is a convex programming prob-
lem by checking the Hessian matrix. Thus, P2 can be solved
by applying KKT conditions. The Lagrangian associated with
P2 is given by

L({δk}, {πk}, {µk}, {ρk}, {βk})
= UBS({δk}, {πk}) + µ1(θ1π1 − δ1)

+

K∑
k=2

µk

(
θk(πk − πk−1) + δk−1 − δk

)
+ ρ1δ1 +

K∑
k=2

ρk(δk − δk−1) +

K∑
k=1

βk(δk − θk),

(21)

where µ1 is the Lagrange multiplier corresponding to con-
straint C1, {µk, k = 2, · · · ,K}, {ρk,∀k ∈ K}, and {βk,∀k ∈
K} are the vectors of Lagrange multipliers corresponding to
constraints C2, C3, and C4, respectively. KKT conditions are
summarized as follows:

• Primal constraints: 0 ≤ δ∗1 ; δ∗k−1 ≤ δ∗k, δ
∗
k = δ∗k−1 +

θk(π∗k−π∗k−1),∀k ∈ K, k 6= 1; δ∗1 = θ1π
∗
1 ; δ∗k ≤ θk,∀k ∈

K;
• Dual constraints: µ∗k ≥ 0, ρ∗k ≥ 0 and β∗k ≥ 0,∀k ∈ K;
• Complementary slackness: ρ∗1δ

∗
1 = 0; ρ∗k(δ∗k − δ∗k−1) =

0,∀k ∈ K, k 6= 1; β∗k(δ∗k − θk) = 0,∀k ∈ K ;
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• The first-order conditions of the Lagrangian is

∂L
∂δk

=
∂RBS(δk)

∂δk
− µk + µk+1 + ρk − ρk+1

+ βk = 0,∀k ∈ K, k 6= K,

∂L
∂δK

=
∂RBS(δK)

∂δK
− µK + ρK + βK = 0,

∂L
∂πk

=− λk + µkθk − µk+1θk+1 = 0,

∀k ∈ K, k 6= K,

∂L
∂πK

=− λK + µKθK = 0.

(22)

The contract design and optimization is handled by the cen-
tralized base station, and the detailed process is summarized
as part of the Algorithm 1.

D. Optimal Contract Design without Information Asymmetry
If there exists a selfish base station which is perfectly

aware of every vehicle’s type, it can further increase its
profit by exploiting the complete information. The contract
has to ensure that the payoff of each vehicle is non-negative.
Otherwise, the vehicles have no incentive to accept the contract
items. To this end, the contract item also has to meet the IR
constraint. Furthermore, the contract item has to satisfy the
following property:

Theorem 2. In the contract design without information asym-
metry, any optimal contract item (δ∗k, π

∗
k) ∈ C should satisfy

θkπ
∗
k = δ∗k. That is, the payoff for any vehicle is zero.

Proof: Theorem 2 can be proved by contradiction. Given
an optimal contract item (δ∗k, π

∗
k), if θkπ∗k − δ∗k > 0, then

the base station can increase its utility by decreasing π∗k to
π̂k which satisfies θkπ̂k − δ∗k = 0. This contradicts with the
assumption that (δ∗k, π

∗
k) is optimal.

Thus, by enforcing the utility of each vehicle to be zero,
P2 can be written as

P3 : max
({δk},{πk})

UBS({δk}, {πk}),

s.t. C̃1 : θkπk − δk = 0,∀k ∈ K,
C3, C4. (23)

P3 can also be solved by using KKT conditions.

Theorem 3. In the contract design without information asym-
metry, for any type k vehicle, k ∈ K, the optimal reward is
π∗k = 1 regardless of θk.

Proof: From Theorem 2, we have θkπ
∗
k − δ∗k = 0.

Furthermore, from the upper bound of δk ≤ θk, we can derive
δ∗k = θk since the base station can always increase δk to
increase its utility until the equality holds. Thus, we have
θkπ
∗
k − θk = 0, and π∗k = 1.

V. MATCHING-BASED TASK ASSIGNMENT

In this section, we first introduce the task assignment
model and the problem formulation. Then, we introduce the
proposed pricing-based matching algorithm. Next, we provide
a comprehensive theoretical analysis on convergence, stability,
optimality, and complexity.

A. Task Assignment Model

1) Task Transmission Delay: After the first-stage resource
sharing, the UEs can offload their computation tasks to vehi-
cles which serve as fog nodes. In the offloading mode, data
can be directly transmitted from UEs to vehicles to reduce the
total number of transmission hops. We assume that each UE
is allocated with an orthogonal spectrum resource block such
that the co-channel interference among UEs can be ignored.
Furthermore, the large-scale fading and the small-scale fading
are modeled by using the Rayleigh fading model and the free-
space propagation path-loss model, respectively. If the task of
UE Un is offloaded to vehicle Vm, the signal to noise ratio
(SNR) of the received signal at vehicle Vm is given by

γm,n =
pnd
−α
n,mh

2
n,m

N0
, (24)

where pn denotes the transmission power of UE Un. dn,m is
the transmission distance between UE Un and vehicle Vm. α is
the path-loss exponent. hn,m represents the Rayleigh channel
coefficient with a complex Gaussian distribution. N0 denotes
the power noise.

Hence, the transmission time required by UE Un for up-
loading its task with size Dn can be obtained as

T tn,m =
Dn

Bn,m log2 (1 + γn,m)
, (25)

where Bn,m refers to the bandwidth of the link between UE
Un and vehicle Vm.

We assume that the vehicles travel on a two-lane two-
directional road. Due to the fast vehicle mobility, vehicle
Vm might move out of the communication range of UE Un
during data transmission, which results in an offloading failure.
Denote the dwell time of Vm inside the communication range
of Un as τon,m. An offloading failure occurs if τon,m < T tn,m.
Therefore, τon,m also represents the delay constraint of data
transmission because Un can only transmit data to Vm when
they remain connected. That is, an offloading request is
admissible if and only if T tn,m < τon,m.

To estimate the vehicle dwell time, a simple way is to use
the average velocity. Assuming that UE Un is located along
the road side and its communication range is a circle with a
diameter dn, τon,m can be calculated as

τon,m = d̂n,m/v̄m, (26)

where d̂n,m denotes the distance between the location of Vm
and the endpoint of the circle’s diameter in the vehicle heading
direction, and v̄m denotes the average velocity of Vm.

Remark 5. Both d̂n,m and v̄m can be estimated from the
GPS data [35]. For example, if Vm moves in the centrifugal
direction to leave the communication area of Vn, d̂n,m is
calculated as d̂n,m = 1

2dn
− dn,m. Otherwise, if Vm moves in

the centripetal direction, we have d̂n,m = 1
2dn

+dn,m. We have
not put any restriction on the mobility models of vehicles. As
long as the vehicle dwell time can be obtained, the proposed
matching-based task assignment scheme can be adaptable for
different mobility models.

Remark 6. In this work, we assume that the GPS infor-
mation is known to the base station. This assumption has
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also been accepted and employed in a number of previous
works [8], [14]. Furthermore, even if the GPS information is
unavailable to the base station, vehicle positions can still be
obtained based on mobility prediction techniques [36]–[39].

2) Task Execution Delay: If the type of vehicle Vm is k, i.e.,
the amount of computation resource is δm = δ∗k, the execution
time required to process the task of UE Un is calculated as

T cn,m =
Cn
δm

=
Cn
δ∗k
. (27)

The transmission latency from Vm to Un is ignored, due to
the fact that the size of computation results is usually negligi-
ble compared to that of the input data, e.g., face recognition.
If Vm has already moved out of the communication range of
Un, the results have to be forwarded firstly from Vm to the
base station, and then sent from the base station to Un.

The total delay when the task of UE Un is assigned to
vehicle Vm is given by

T totaln,m = T tn,m + T cn,m. (28)

3) Problem Formulation: The purpose of this work is to
relieve the heavy burden of the base station and reduce the total
network delay by leveraging the under-utilized computation
resources of vehicles. Hence, we model the objective function
as the total delay of the overall network, i.e., the sum delay
of all the UEs. We investigate how to assign the tasks of UEs
to vehicles such that the objective function is minimized. The
task assignment decision is defined as follows:

Definition 3. (Task Assignment Decision): The task assign-
ment decision between N UEs and M vehicles is defined
as a N × M matrix X, where its (n,m)-th element , i.e.,
xn,m, is defined as a binary value. xn,m = 1 means that
the computation task of UE Un is assigned to vehicle Vm.
Otherwise, xn,m = 0.

The problem is formulated as follows:

P4 : min
X

N∑
n=1

M∑
m=1

xn,mT
total
n,m

s.t. C5 :
∑

Vm∈VM

xn,m ≤ 1,∀Un ∈ UN ,

C6 :
∑

Un∈UN

xn,m ≤ 1,∀Vm ∈ VM ,

C7 : T totaln,m ≤ τn,∀Un ∈ UN ,∀Vm ∈ VM ,
C8 : T tn,m ≤ τon,m,∀Un ∈ UN ,∀Vm ∈ VM . (29)

Here, C5 and C6 guarantee that there is a one-to-one corre-
spondence among UEs and vehicles. C7 and C8 denote the
delay constraints of task assignment and task transmission,
respectively.

To provide a tractable solution, the combinatorial problem
P4 can be transformed into a two-sided matching problem
based on the problem structure. The matching problem can be
represented as a triple (UN ,VM ,F), where UN and VM are
two distinct and finite sets of matching participants, i.e., UEs
and vehicles, respectively. F represents the set of matching
preferences of UEs. Particularly, each UE aims at minimizing

its individual delay under the specified constraints. A one-to-
one matching φ is defined as [40]:

Definition 4. (Matching): For the formulated matching prob-
lem (UN ,VM ,F), the matching φ is a one-to-one correspon-
dence from set UN ∪MK onto itself under preference F , i.e.,
φ(Un) ∈ VM ∪ {Un}, ∀Un ∈ UN . φ(Un) = Vm represents
that UE Un is matched with vehicle Vm, which is equivalent to
xn,m = 1. φ(Un) = Un means that Un has not been matched
with any vehicle, and the task of Un will be handled by the
base station.

B. Preference List Construction

In order to implement the two-sided matching, every UE
has to construct its preference list by ranking vehicles from
the other side in accordance with the preferences. For UE
Un, it can achieve different delay performances when being
paired with different vehicles. Therefore, in order to minimize
the total delay, we can define that the preference is inversely
proportional to the total delay, e.g., 1/T totaln,m . The preference
of Un towards Vm is calculated as

Gn,m
∣∣
φ(Un)=Vm

=
1

T totaln,m

− Pm, (30)

where Pm is the price for utilizing the computation resource
of Vm, the initial value of which is zero. The role of Pm is to
resolve the matching conflict, which will be explained later.
Here, 1/T total is just used as an example. The preference
model can be extended to more complicated expressions.

We introduce a complete, reflexive, and transitive binary
preference relation [40], i.e., “�”, to compare the preferences
towards different vehicles. For instance, Vm �Un

Vm′ repre-
sents that Un prefers Vm to Vm′ , which is given by

Vm �Un Vm′ ⇔ Gn,m|φ(Un)=Vm
> Gn,m′ |φ(Un)=Vm′ . (31)

Furthermore, Vm �Un
V

′

m represents that Un prefers Vm at
least as well as V

′

m, which is given by

Vm �Un
Vm′ ⇔ Gn,m|φ(Un)=Vm

≥ Gn,m′ |φ(Un)=Vm′ . (32)

To obtain the entire preference list of Un, we temporarily
pair it with every vehicle in order to derive the preference
for each combination. We use Fn to denote the preference
list of Un towards all the vehicles. Fn is obtained by sort-
ing all the M vehicles in a descending order according to
Gn,m|φ(Un)=Vm

,∀Vm ∈ VM . The total set F is constructed
as F = {Fn,∀Un ∈ UN}.

C. Pricing-based Stable Matching

After obtaining the preference for all the UEs in UN , the
second-stage task assignment problem can be solved by using
a pricing-based stable matching algorithm. The main parts of
it are the propose and the price rising rules, which are defined
as follows:

Definition 5. (Propose Rule): For any UE Un ∈ UN ,
it proposes to its most preferred vehicle which ranks as
the first place in its preference list Fn, e.g., Vm. We have
Vm �Un

Vm′ ,∀Vm′ ∈ Fn, Vm′ 6= Vm.
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Definition 6. (Price Rising Rule): For any vehicle Vm ∈ VM
that has received more than one proposal from UEs, it can
raise its price to increase the matching cost, which is given
by

Pm = Pm + ∆Pm. (33)

The matching process is implemented in an iterative fashion,
and the detailed process is summarized as part of the Algo-
rithm 1. It is noted that the matching-based task assignment
can also be managed by the base station. Specifically, each
UE uploads its preference list to the base station, and then a
stable matching between UEs and vehicles is derived by the
base station based on the preference lists of UEs. Eventually,
the base station broadcasts the matching result to UEs, which
offload their tasks to the corresponding vehicles accordingly.
The implementation procedure is explained as follows.

Phase 1: Matching Preference Initialization
• Calculate Fn for each UE Un ∈ UN .
• Initialize φ as an empty set. Define Ω as the set of

vehicles which receive more than one matching proposal.
Ω = ∅ at the beginning.

• Set Pm = 0 for any vehicle Vm ∈ VM .
Phase 2: Iterative Matching
Repeat the following process iteratively.
• If ∃φ(Un) = ∅, preform the propose rule for UEs.

– Each UE Un ∈ UN proposes to its most preferred
vehicle in its preference list Fn.

• If any vehicle Vm ∈ VM receives only one proposal from
a UE, then Vm will be directly matched with the UE
which has proposed to it. Otherwise, add Vm into set Ω.

• If Ω 6= ∅, perform the price rising rule for vehicles which
received more than one matching proposal.

– Each vehicle Vm ∈ Ω increases its price by ∆Pm.
– Every UE which has proposed to Vm updates its

preference towards Vm accordingly and renews its
proposal.

– Remove the vehicles which receive only one pro-
posal from Ω.

Until Every Un has been matched with a vehicle, i.e.,
∀φ(Un) 6= ∅, or there exists no available vehicle for the
unmatched UEs.

Phase 3: Task Assignment Implementation
The UEs offload their tasks according to the matching

results obtained in Phase 2. Assuming φ(Un) = Vm, UE
Un will send its task to vehicle Vm for processing. For those
unmatched UEs in set Φ, their tasks will be processed by the
base station. In the next slot, the base station updates the sets
UN and VM , and the task assignment process will return to
Phase 1.

Remark 7. It is noted that any vehicle Vm ∈ VM , which
cannot satisfy the delay constraint of Un, will be directly
removed from Fn despite of the preference.

D. Stability, Optimality and Complexity Analysis

Definition 7. (Stability): A matching φ is stable if for any
Un ∈ UN , there does not exit a Vm such that Vm �Un

φ(Un).

Algorithm 1 Contract-Matching Algorithm
1: Input: M , N , {θk}, {λk}
2: Output: C∗, φ

Stage I: Contract-based Incentive Mechanism Design
3: Sort the types of vehicles based on (4);
4: Obtain the optimal contract C∗ by solving (20);
5: for Vm ∈ VM do
6: Calculate the maximum amount of shared resource

δupperm based on (3).
7: if θk ≤ δupperm < θk+1 then
8: Vm signs the contract item (δ∗k, π

∗
k) with the base

station, and shares its idle resource δ∗k.
9: end if

10: end for
Stage II: Matching-based Task Assignment

11: Set φ=∅, Ω=∅, ∆Pm=0.1, Pm=0 and Uvm = ∅ for each
Vm ∈ VM ;

12: Every UE Un ∈ UM builds its preference list Fn based
on (30) and (31);

13: while ∃φ(Un) = ∅ do
14: for Un ∈ UN do
15: UE Un proposes to its most preferred vehicle in its

updated preference list Fn;
16: end for
17: for Vm ∈ VM do
18: if Vm receives more than one request then
19: Ω = Ω ∪ {Vm};
20: Add UEs which proposed to vehicle Vm to the set

Uvm ;
21: end if
22: end for
23: if Ω = ∅ then
24: Match vehicles with UEs based on the proposals;
25: else
26: for Vm ∈ Ω do
27: Vehicle Vm increases its price Pm by ∆Pm based

on (33);
28: Every Un ∈ Uvm updates its preference based on

(30), and renews its proposals;
29: Remove Un from Uvm if it gives up Vm;
30: Remove Vm from Ω if it receives only one pro-

posal.
31: end for
32: end if
33: end while

Theorem 4. The pricing-based matching algorithm produces
a stable matching within finite iterations.

Theorem 5. The obtained stable matching is weak Pareto
optimal for UEs.

Proof: A similar proof can be found in our previous works
[1], [12].

Remark 8. (Computational Complexity) In the contract-
based incentive mechanism design, the formulated optimiza-
tion problem is a standard convex programming problem with
M equality constraints and 2M+1 inequality constraints. The
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TABLE I
PARAMETERS.

Parameter Value
Number of vehicles 5− 20
Number of UEs 6− 25
Data size of UE’s task 100− 200 Mb
Computation size of UE’s task 100− 400 Mb
Delay constraint 0.1− 2 s
Velocity of vehicles 2− 20 m/s
Cell radius 1000 m
Radius of the UE’s communication coverage 200 m
Computing resources of the base station 5 GHz
Transmission power of UEs 30 dBm
Bandwidth of UEs 20 MHz
Noise power −114 dBm
Path loss exponent −3.4

overall computation complexity is O(M).
In the process of the pricing-based matching, the complexity

for each UE to acquire the preferences of all the vehicles
and the complexity for sorting the obtained preferences are
O(M) and O(M log(M)), respectively. Assuming the number
of iterations required for resolving the conflict in the price
rising process is ζ, i.e., the conflicting elements are matched
within ζ iterations. Hence, the complexity of the matching
process is O(Nζ)(N ≥M) or O(Mζ)(M ≥ N).

The optimal matching result can be obtained by employing
the exhaustive searching scheme. The total number of possible
combinations is (MNN !). Thus, the exhaustive searching
scheme has to examine every possible combination in order
to find out the optimal matching result. The computation
complexity is O(MNN !).

VI. SIMULATION RESULTS

In this section, we validate the proposed scheme via simu-
lations.

A. Contract Feasibility and Efficiency

A series of simulations are conducted to verify the fea-
sibility and the efficiency of the contract-based incentive
mechanism. We consider a single cell with one base station, 20
vehicles, and 30 UEs. The number of vehicle types is equal to
that of vehicles, and assume the vehicle types are following a
Gaussian distribution. Simulation parameters are summarized
in Table I. The proposed scheme is compared with the contract
without information asymmetry [34] and the take-it-or-leave
contract [23]. In the take-it-or-leave contract, the base station
offers a uniform contract item which is designed based on
a threshold type kth. Then, vehicles with higher types, i.e.,
k ≥ kth,∀k ∈ K, will accept the contract, while vehicles with
lower types, i.e., k < kth,∀k ∈ K, will reject the contract.

Fig. 2(a) and Fig. 2(b) show the amount of shared com-
putation resources and the rewards versus different vehicle
types, respectively. As we can see, the computation resources
that can be shared by vehicles and the corresponding reward
increase monotonically with the vehicle type, which have been
already demonstrated in Lemma 2. Furthermore, numerical

results show that the contract without information asymmetry
requires more resources from vehicles compared to that of
information asymmetry. The reward provided for each vehicle
is exactly 1 regardless of the vehicle type, which is consistent
with Theorem 3.

Fig. 2(c) shows the utilities of type 5, type 10, and type
15 vehicles versus the different types of contract items. It
is observed that each vehicle can maximize its utility if and
only if it selects the specific contract item dedicated for its
type. Furthermore, numerical results show that the utilities of
vehicles also increase with the vehicle type, which agrees with
the analysis summarized in Lemma 2.

Fig. 3(a) and Fig. 3(b) show the utility of the base station
and the utility of vehicles versus the vehicle type. Numerical
results show that the asymmetric information actually protects
the vehicles from being overexploited by the base station.
With complete information, the base station is able to design
a contract such that its utility is much larger compared to
the utility achieved under the information asymmetry scenario.
The performance gap increases monotonically with the vehicle
type. Moreover, the contract enforces every vehicle’s utility
to be zero. The reason behind has been analyzed in the
proof of Theorem 2. Therefore, information asymmetry is
actually beneficial to the vehicles because the base station
cannot overexploit a vehicle without knowing the complete
information of its type.

In the take-it-or-leave contract, any vehicle whose type
satisfies k < kth,∀k ∈ K will reject the contract due to
constraint C4. In this case, either the base station’s utility
or the vehicle’s utility is zero. Only the vehicles with higher
types, i.e., k ≥ kth,∀k ∈ K, can achieve nonzero utilities.
However, since the take-it-or-leave contract is designed based
on threshold type kth, the gap between the utility of type
k vehicle and that of the proposed scheme increases along
with k. The reason is that the take-it-or-leave contract is not
incentive compatible.

Fig. 3(c) shows the social welfare versus the vehicle type.
Numerical results demonstrate that the social welfare achieved
by the proposed contract is close to that of the contract without
information asymmetry. The reason is that the utility of the
base station obtained by exploiting the complete information
leads to enormous utility loss of vehicles. On the other hand,
the take-it-or-leave contract achieves the lowest social welfare.

B. Delay Performance

In simulations, we employ the constant-velocity model [10],
[20], and the velocities of vehicles are generated randomly
within the range [2, 20] m/s. To provide a relative comparison,
the delay performances of different algorithms are normalized
and converged to the range of [0, 1] by dividing the largest
delay.

Fig. 4 shows the normalized network delay versus the
number of matching iterations. Numerical results show that the
proposed scheme can converge to a stable matching within a
limited number of iterations. It is also observed that both the
number of iterations required to reach convergence and the
normalized network delay increase with the number of UEs.
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Fig. 2. Contract feasibility: (a) shared computation resources; (b) rewards; (c) utility of vehicles.
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(a) The utility of the base station versus different
types of vehicles.
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(b) The utilities of vehicles versus different types
of vehicles.
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(c) The social welfare versus different types of
vehicles.

Fig. 3. Contract efficiency: (a) utility of the base station; (b) utilities of vehicles; (c) social welfare.

The reason is that the competition among UEs becomes more
intense as the number of UEs increases. As a result, additional
price-rising iterations are necessary to resolve the competition.
Moreover, if the number of UEs is much larger than that of
vehicles, a larger amount of tasks have to be processed by
the overloaded base station, which significantly increases the
network delay.

Fig. 5 shows the normalized network delay versus the
number of UEs. Numerical results demonstrate that the net-
work delay is inversely related to the number of vehicles and
positively related to the number of UEs, which is consistent
with the results of Fig. 4. Furthermore, the proposed scheme
is able to achieve a network delay that is close to that of the
optimal exhaustive searching algorithm but with a much lower
complexity.

Fig. 6 shows the normalized network delay versus the
total delay constraint of the computation task. As the total
delay constraint increases, the number of eligible vehicles
also increases accordingly, and more and more tasks can be
offloaded to the vehicles rather than being processed by the
overloaded base station with limited computation resources.
This will dramatically reduce the network delay since the
under-utilized resources of vehicles have been well exploited.
Numerical results also demonstrate that the proposed scheme

can achieve close-to-optimal performance under all the inves-
tigated scenarios.

Fig. 7 shows the normalized network delay versus the ve-
hicle velocity. Numerical results demonstrate that the network
delay increases with the vehicle velocity. The reason is that the
number of eligible vehicles decreases along with the vehicle
velocity due to the stringent constraint of transmission delay.
As a result, it is less likely for a UE to be matched with a
satisfactory vehicle, and the corresponding task can only be
processed by the overloaded base station. Hence, the proposed
scheme is more suitable for hot spots where there exist a large
number of parked vehicles or the vehicles move slowly due
to traffic congestion.

VII. CONCLUSION

In this paper, we investigated the computation resource allo-
cation and task assignment problem in VFC from a contract-
matching integration perspective. A contract-based incentive
mechanism was proposed to motivate vehicles to share their
resources, and a pricing-based stable matching algorithm was
developed to address the task assignment problem. Numerical
results demonstrate that the proposed incentive mechanism
achieves a social welfare that is close to the optimal per-
formance without information asymmetry, while the proposed
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Fig. 7. Normalized delay versus the velocity of vehicles.

task assignment scheme is able to achieve a network delay that
is close to that of the optimal exhaustive searching algorithm
but with a much lower complexity.

In future works, we will investigate the more complicated
scenario where the precise knowledge of channel and vehi-
cle states is unknown, and study how to combine machine
learning-based approaches to optimize the long-term delay
performance.

Furthermore, the wide-scale deployment of VFC faces nu-
merous security and forensic challenges. Different from cloud
computing where the servers are deployed, operated, and
maintained by specialized service providers, the fog nodes are
generally deployed and maintained by third-party developers
or even users. Therefore, to guarantee the reliable operation
of VFC, several security mechanisms including confidentiality,
integrity, authentication, access control, and forensics, etc.,
are required [41]. However, some existing security solutions
developed for cloud computing may not scale well in VFC
[42]. Particularly, the heterogeneous and distributed nature of
fog nodes poses new threats on authentication, access control,

and resilience [42]. In summary, the research on the security
aspect of VFC is still in the infancy stage, which requires
further investigation and examination.
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