Modelling Software-Defined Networks
with Alloy*

Maria-del-Mar Gallardo and Laura Panizo
{gallardo, laurapanizo}@lcc.uma.es

Universidad de Mélaga, Andalucia Tech,
Departamento de Lenguajes y Ciencias de la Computacién,
Campus de Teatinos s/n, 29071, Mdlaga, Spain

Abstract. Software defined networks (SDNs) are a recent paradigm to
implement flexible networks able to dynamically change the routing rules
of data. SDNs present a complex static structure composed of different
types of nodes (controllers, switches and hosts), data, links, and rules
for transmitting data. In addition, the evolution of a SDN over time
is also complicated due to their highly distributed character. Formal
methods have proven to be excellent techniques to model, specify and
check whether complex software systems as SDNs behave as expected.
In this paper, we explore the modelling and analysis of both the static
structure and the dynamic behaviour of SDNs using the ALLOY formal
method.

1 Introduction

Computer networks are evolving towards more agile networks known as Software-
defined Networks (SDNs) where the data and control planes are decoupled.
On the one hand, the implementation of a SDN has to take into account the
complexity of the whole network structure. On the other, it is also necessary
to deal with the complex interactions between the different network entities
which are usually distributed. Thus, the SDN structure and behaviour should
be analyzed against the most critical properties before the network is deployed.

Currently, formal methods have become excellent techniques to model, spec-
ify and analyze complex software systems. Each formal method is usually fo-
cussed on the modelling and analysis of a particular type of systems and proper-
ties. For example, model checking techniques [1] are automatic procedures, very
good at locating errors caused by unexpected interactions of processes during
the execution of concurrent software as those that may occur during the execu-
tion of a SDN. However, they do not behave in the same way when analyzing
structurally complex systems due to the well known state-explosion problem. In

* This work has been supported by the Spanish Ministry of Economy and Competi-
tiveness project TIN2015-67083-R and the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 815178 (5GENESIS)

Actas XXVI JCSD 68 Zaragoza, 19-21 de Junio de 2019

2 M.M. Gallardo & L. Panizo

—— Datalink Control Plane
— — Control link Controller

~

o
AR

2 N
Host 1 Data Plane i ! \
o s ,’ \
-
h -7] ®, Switch4
= ez Switch2 ;- — ‘\.
N ; BT L -
|7 Swieht —— Mo
Switch 3 ESi®

Fig.1: Example of SDN

contrast, since theorem provers use deductive methods, they are better to ana-
lyze complex systems, although they may need the user interaction to proceed
at some points during the analysis.

In this paper, we use the ALLOY language and tool to model and analyze the
two potential sources of SDN errors mentioned above (structural and execution
errors). ALLOY [2, 4] is a declarative language based on sets and set relations.
In addition, it uses first order relational logic to describe properties and refine
the models. Although, internally, the core of ALLOY use a theorem prover, from
the user point of view, it is also a completely automatic tool (similar to a model
checker) that generates models correct wrt the specification. The price to pay is
that ALLOY models are bounded in size, i.e., it is not possible to analyze models
of arbitrarily large size. Even though this is an important restriction, in practice,
small models are usually sufficient to detect errors in system design.

The article is organized as follows. Section 2 introduces Software-Defined
Networks (SDNs). Section 3 presents the ALLOY language, covering signatures
and relations. Sections 4 and 5 presents the static and dynamic model of a SDN.
Section 6 discusses different ways to run the tool. Finally, Section 7 summarizes
the conclusions. It is worth noting that the SDN example shown is a modified
version of the evaluable experimental project carried out by the students of the
“Formal Methods in Software Engineering” subject at the University of Malaga.

2 Description of the problem

A Software-Defined Network [5] (SDN) is a modern networking paradigm that
explicitly separates the data and control planes to include intelligence in the
network. Figure 1 shows the basic SDN architecture, which is composed of two
main kinds of elements: (1) The Controller is the core entity of the SDN control
plane. The network intelligence is logically centralized in the controller, which is
able to dynamically configure the forwarding devices of the data plane in order
to achieve a specific goal. (2) Switches are data plane components in charge of
forwarding the data packets from its source to the destination. In SDNs, each
switch has a routing table that contains a set of rules defining how the different
incoming packets must be processed (forwarded, discarded, etc.). Finally, Hosts

Actas XXVI JCSD 69 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy 3

Action

DataPacketType |

Rule
action: Action
ket Ty D ket Ty
p acketType: DataPacketType extends, extends
extends extends

Discard Forward

Fig. 2: Meta-model of the SDN model

are the endpoints of the network, they are the source and destination of the data
plane traffic. Although hosts are not specific elements of the SDN architecture,
in our case study, they are part of the model.

Figure 2 shows the basic components of the SDN model implemented in
Section 4. For example, we abstract hosts, switches and controllers as network
nodes that contain ports to connect them with other nodes using port-to-port
(bidirectional) links. Although it is not explicitly represented in the meta-model,
each switch has always an specific link (and thus a port) that connects it with the
controller. This connection is mainly used to configure the switches. The data
transmitted between nodes are called packets. There are two types of packets:
control packets include control plane information, such as new rules that must
be installed in an specific switch, or a request to know how to process a data
packet. Data packets encapsulate information that must be transmitted from
one host to another. Data packets also contain the source and destination hosts,
the type of data packets, and the current position in the network.

Switches contain tables with rules that specify how to route data packets.
Simplifying, a rule is a structure with a field denoting the type of data packet
(e.g. HTTP or FTP) and the input and output ports. The meaning of the rule
is as follows. If a data packet of a particular type arrives at port Porty, it must
be forwarded through port Porto. In addition, it is also possible to define rules
that discard incoming data packets. When a switch has no rule to deal with a
data packet, it sends a request to the controller in order to know how to process
the packet. Finally, the controller can also send new rules to switches to update
the routing tables. This description shows that a SDN has a complex static
structure with nodes, links, packages, rules and routing tables. It also has a
complex dynamic behaviour when packets move through the network nodes.

In previous work [3], we reviewed the state-of-the-art on SDNs verification.
Most of the approaches reviewed focused on the analysis of network invariants
(e.g. absence of loops, host reachability, etc.) by means of the analysis of data
plane traffic. In the present work, we explore the capabilities of ALLOY to gen-

Actas XXVI JCSD 70 Zaragoza, 19-21 de Junio de 2019

4 M.M. Gallardo & L. Panizo

erate valid network topologies (including the data and control plane) whose
evolution over time fulfils some desired properties.

3 Background of Alloy

In this section, we give a very simplified presentation of ALLOY. In order to
make the presentation more intuitive, we will introduce the language using the
code of the SDN implementation in Section 4.

The basic constructors of the language are signatures and relations and
constraints. Signatures are sets whose elements are called atoms. For example,
in Listing 1.1 defines the set of ports of the SDN model. Signatures can
be and, as usual, they cannot have proper elements, but through their
extensions. For instance, defines the set of links between ports,

but its elements have to belong to one of its extensions | ctrLink | OT [DataLink |.

Relations are sets of tuples of the same arity. They are always defined in
the context of a signature, which is the type of the first element of the tuples.

For example, |abstract sig Link | defines two binary relations, and , with

type | p1, p2C Link X Port | They are used to associate each link with the ports it

connects. For instance, € means that the first port of link is
[po]. By default, the multiplicity of these relations is [one], i.e., each link has a
unique and ports. ALLOY’s relations support other multiplicities such as

lone, some, set |

| abstract sig DataPacketT | is the set of the type of data packets (elements of non-

abstract signatures or [mrre]). The keyword is used to say that there is
only one and packet type.

ALLOY uses a first-order relational logic to define constraints. It also supports
the definition of functions to ease the use of these constraints. Listing 1.2 shows
some functions used in the SDN model. The function returns the node
which a port belongs to. The expression shows the use of the composition
operator []. Relation [ports QIMXIPO_rtI can be used to obtain the set of ports
of a node [n] as [n.ports |, and, also, the nodes to which a port belongs ()
Thus, it is possible to compose relations on the left and right sides, which is
frequently used in ALLOY to express properties. For instance, function
returns the links in which a port is placed: and are the sets of links
in which @ is the first and the second port, respectively. Operators
represent the union, intersection and different of sets, respectively. Function
uses the transitive closure of binary relation [comnected], written
as [-connected], to find all nodes reachable from a given node. ALLOY contains
quantifiers and to denote the universal and existential quantifiers. In
addition, it also provides quantifiers and to simplify the description of
some properties. For instance, the constraint 6 in Listing 1.3 establishes that
“each control link connects the controller with a switch”.

Actas XXVI JCSD 71 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy 5

4 Static definition of the SDN structure in Alloy

In this section, we implement an ALLOY SDN model using the meta-model
shown in Figure 2. Thus, the ALLOY model contains three abstract classes | Node],
and [Packet |, that represent the main SDN entities, and some non-abstract
extensions of these classes, such as [controller|, [switeh] or [Host | In addition,
model contains two abstract classes that define enumerated types: that
describes how a switch processes an incoming data packet ([Forvard | or [piscard |),

and [pataPacketT |, that represents the type of a data packet ([srre | or [1cp]).

4.1 Signatures and relations

We start by defining the SDN components in ALLOY. Listings 1.1 and 1.2 contain
the definition of the main structural actors of SDNs: is the
abstract class, and [Host |, [switcn| and [controller| are extensions. The abstract
signature embodies two binary relations shared by these components and
[connected], that, respectively, associate each node with its ports and with all the
nodes directly connected with it (excluding the [controller |). The multiplicity of
relations is [some |, meaning that all nodes have at least one port and are at least
connected with one node. The specification establishes that there is only
in the network. A has two relations [oButfer | and [iButter |, which
contain the data packets to be sent or received, respectively. Finally, a
has a relation that stores a set of rules.

sig Port{} abstract sig Packet{
position: lone Port
abstract sig Link{ }
pl,p2: Port sig DataPacket extends Packet{
type: DataPacketT,
sig CtrLink extends Link{} src,dest:Host
sig Datalink extends Link{} }
sig CtrPacket extends Packet{
abstract sig DataPacketT{} newRule: lone Rule,
one sig TCP extends DataPacketT{} request: lone DataPacket
one sig HTTP extends DataPacketT<{} ¥
/*Functions*/
abstract sig Nodef{ fun node(p:Port):Node{ ports.p }
ports: some Port, fun link(p:Port):Link{ pl.p + p2.p }
connected: some Node
} fun nodeLinks(n:Node):Link{
one sig Controller extends Node{} {l:Link| some 1.(pl+p2) & n.ports}
sig Host extends Node{ ¥
iBuffer: set DataPacket,
oBuffer: set DataPacket fun datalinks(n:Node): Link{
} nodelLinks [n] & DatalLink
sig Switch extends Nodef{ }
table: set Rule
} fun CtrLinks(n:Node): Link{
nodeLinks [n] & CtrLink
abstract sig Action{} }
one sig Forward extends Action{}
one sig Discard extends Action{} fun reachableNodes(n:Node):Node{
n. connected
sig Rulef{ }
packetType:DataPacketT,
iPort: Port, fun remotePort(p:Port): Port{
action: Action, {pR: Port - p |
oPort : lone Port one (pR & linkl[pl.(pl + p2))}
} }
Listing 1.1: Signatures-relations I Listing 1.2: Signatures-relations II

Actas XXVI JCSD 72 Zaragoza, 19-21 de Junio de 2019

6 M.M. Gallardo & L. Panizo

connected connected

Fig. 3: Examples of instances of the ALLOY model

|abstract sig Packetl defines the packets that move through the network. Re-

lation |position| associates each packet with its position, which is the port of
some node. The multiplicity means that a packet could not be at any port
(e.g. discarded packets, or packets in the input/output buffers of a [#ost]). This
abstract signature has two extensions: |sig DataPacketl and | sig CtrPacket | On the

one hand, contains the packets carrying user data. It has three binary

relations: associates the packet with the data packet type ([rme] or [1cp]),
and that relate the packet with the source and destination hosts. On
the other, includes the set of packets transmitted between the con-
troller and switches. It contains two relations: used by the controller
to update with a new rule the routing table of a switch, and used by
switches to ask the controller what to do with a data packet.

The abstract signature and its extensions [Forward | and [piscard | define
the enumerated type with the possible actions to be carried out by switches with
data packets: forward them to another node or discard them. defines
the forwarding rules. Each rule applies to a specific packet type (),
to a specific input port through which the packet has to arrive (), and
the action to be realized with the packet [action]). When the action is | Forward],
relation contains the port through which the packet has to be forwarded.

Once a model is constructed, ALLOY can generated model instances according
to the constraints defined. Figure 3 shows two instances of the ALLOY model of
Listings 1.1 and 1.2. Both figures have been simplified by hiding links, packets
and rules. It is easy to observe that these instances do not match the expected
structure of a SDN. They contain several errors: the is shared by different
nodes, the is connected with itself, is directly connected to the
[controller |, and so on. In the next section, we enrich the model with constraints
that delimit the expected topology of SDN.

4.2 Adding constraints to the Alloy SDN model

We now add constraints to generate structurally correct SDNs. Constraints are
added as to models. All model instances have to satisfy all constraints in
facts. Listings 1.3 and 1.4 show the 32 constraints that define the static behaviour
of a SDN. In the rest of the section, we briefly describe some of them.

Actas XXVI JCSD 73 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy 7

Fact 1 imposes that the two ports of a link have to be different. In ALLOY,
signatures and relations are dealt with as sets. Thus, asserts that sets

and are different. But, since binary relations and are defined

with multiplicity [one], and are singleton sets.

Fact 2 uses function to assert that each port must belong to a unique
node. Observe that, in this case, is used to indicate that set is a
singleton. Fact 3 is similar except for the use of [1one |, which means that for cach
port [p], the set must have at most one element. The fourth fact asserts
that each link connects two different nodes.

Fact 8 establishes that the has only control links. Word is the
subset operator. Fact 10 asserts that every has at least two [DataLink | In
this case, we have used operator [#] that returns the size of the corresponding
set. Observe that all these constraints are needed since ALLOY is free to create
relations among atoms whenever no constraint prohibits them.

Facts 11 to 14 contain facts to avoid the existence of isolated nodes in the
model instances, and facts 15 and 16 simplify the instances generated by the
model. On the one hand, fact 15 establishes that each port stores at most a
packet. On the other, fact 16 says that data packets are placed in a port or in an
input/output host buffer. Observe that the use of multiplicity makes both
the disjunction and the union [+] exclusive, that is, each data packet has to
be at a port, or else at an input buffer, or else at an output buffer.

Facts 17 and 18 refer to the content of data links. For example, fact 17
imposes that the packets at the extreme of a data link have to be data packets.
Expression |1.(p1+p2) [position] | iS equivalent to |positi0n.(l.(p1+p2)) | that returns

the data placed at the extremes and of link [1].

Facts 19 to 25 refer to data and control packets. Fact 19 says that the source
and destination hosts have to be different. Fact 20 says that a control pack can
have a (when the is communicating with a to update
its routing table), or a (when a is asking to the what to
do with a given data packet). Observe that the use of makes it impossible for
a control packet to have both a |newkule | and a [request| The two following facts
(21 and 22) establish that the direction of control data interchanged between
the and the is correct. Thus, when a control packet is placed
at a switch port the packet must contain a [nevhule | Inversely, when the control
packet is at a controller port, it must contain a[request | Facts 23 and 24 affirm
that packets in host buffers are correct. Thus, fact 23 says that data packets
placed at the input buffer of a host cannot be placed at any port, and that
their destination host must be |£| Fact 24 is similar. Finally, fact 25 imposes
that the data packets at an output buffer of a host | n | must have as destination
another host reachable from [n] through data links and intermediate switches.

Facts 26 to 32 describe the rules and consistency of the routing tables. For
instance, fact 27 affirms that routing tables have at most a rule for each port
and packet type (i.e. routing tables should not contain repeated or contradic-
tory rules). Observe that expression| all s:Switch, disj ri,r2:s.table | is an universal

Actas XXVI JCSD 74 Zaragoza, 19-21 de Junio de 2019

8 M.M. Gallardo & L. Panizo

fact LinksAndNodes<{
//1-the ending ports of any link are different
all 1:Link]| 1l.pi!=1.p2
//2- each port belongs to a node
all p:Port| one node[p]
//3-each port belongs at most to a link
all p:Port| lone link[p]
// 4- The ports of each link belong to different nodes
all 1:Link| node[l.pil]!=node[l.p2]
//5-connected is well defined
all n:Node| n.connected = {m:Node-Controller| some 1l:Link]
node [1.(pl+p2)] = n+m}
//6-Control links connect switches and Controller
all 1:Link| 1 in CtrLink implies one node[l.(p1+p2)] & Controller and
one node[l.(pi+p2)] & Switch
//7T-Data links connect two switches or a switch and a host
all 1:Link| 1 in Datalink implies some node[l.(pl+p2)] & Switch and
Controller not in node[l.(pl+p2)]
//8-all controller links are control Llinks
nodeLinks [Controller] in CtrLink
//9-the controller has ezactly a link to each switch
all s:Switch| one nodeLinks[Controller] & nodeLinks[s]
//10-switches have at least two data links
all s:Switch| #nodeLinks[s] & Datalink >=2
//11-Switches can at least reach two hosts
all s:Switch| #(reachableNodes[s]&Host) >=2
//12-Switches have at least two nodes connected
all s:Switch| #s.connected >=2
//13-Hosts do mnot have links to the Controller
no nodelLinks [Controller]&nodeLinks [Host]
//14-Each host has only one link to a switch
all h:Host| one s:Switch| h.connected = s
}
fact DataPackets{
//15-at most omne packet in a port
all p: Port| lone position.p
//16-data packets are well placed at ports or buffer hosts
all pk:DataPacket| one pk.position or one (iBuffer+oBuffer).pk
}
fact DataControlLinks{
//17- DataLink contains only DataPackets
all 1:DatalLink| 1.(pl+p2)[position] in DataPacket
//18- CtrLinks contains only CtrPackets
all 1:CtrLink| 1.(pl+p2)[position] in CtrPacket
}
fact Packets{
//19-The source and destination hosts of a DataPacket are different
all pk:DataPacket| pk.src != pk.dest
//20-Each control packet has a new rule or a Tequest
all pk:CtrPacket| one pk.(newRule + request)
//21-4 control Packet with a new rule arrives to a Switch port
all pk:CtrPacket| (one pk.position & Switch.ports) implies one pk.newRule
//22-A controlPacket with a request arrives to a Controller port
all pk:CtrPacket|(one pk.position & Controller.ports) implies
one pk.request
//23-iBuffer is well defined
all h:Host| h.iBuffer in {pk:DataPacket| (no pk.position) and pk.dest= h}
//24-oBuffer 4is well defined
all h:Host| h.oBuffer in {pk:DataPacket| (no pk.position) and pk.src= h}
//25-Packets in an oBuffer can reach the destination host
all h:Host, pack:h.iBuffer| pack.dest in reachableNodes [h]
}

Listing 1.3: Facts on links nodes, and packets

Actas XXVI JCSD 75 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy 9

fact RulesAndTables{
//26-Each rule belongs to a table at most
all r:Rule | lone table.r
//27-Each switch has at most one rule for each data type and input port
all s:Switch, disj rl1,r2:s.table| ri.packetType != r2.packetType or
ri.iPort != r2.iPort
//28-The input port of a rule belongs to a switch and a data link
all r:Rule | one (r.iPort & Switch.ports) and
one (r.iPort & dataLinks[Switch].(p1+p2))
//29-Forward rules has output port
all r:Rule | one r.oPort iff r.action = Forward and
one (r.oPort & dataLinks[Switch].(pl+p2))
//30-Discard rules has no output port
all r:Rule | #r.oPort =0 iff r.action = Discard
//31-The input and output ports of a rule are different
all r:Rule | r.iPort != r.oPort
//32-The <input and output ports of a rule in a switch belong to the switch
all s:Switch, r:s.table| node[r.(iPort + oPort)] = s

}

Listing 1.4: Facts on rules and routing tables

quantification on all switches, and all rules in their tables. Word is used
to indicate rules have to be different. Finally, observe that the domain
for rules is [s.table], that is, the set rules in the routing table of the switch given
by the quantifier. Fact 31 says that the input and output ports of any rule
have to be different. Observe that condition includes the case

when [z] does not have an output port, that is, is empty.
As it can be seen, the construction of a ALLOY model is not a trivial task, and

requires skills in the use of sets, relations and first-order logic. Sometimes, when
a new constraint is added, the model becomes inconsistent, and the developer
has to find the part of the model that does not match the new constraint. Each
ALLOY model can be analyzed by the ALLOY tool, and if the model is consistent,
the tool generates different model instances. Figure 4 shows an instance of the
SDN model that satisfies all the facts of this section. The instance shows a
network topology composed of the controller, two switches and two hosts.

5 Definition of the SDN dynamics

The SDN described in the previous section is static. For instance, given a packet
on switch port, the model does not specify how the packet position changes to
reach the destination host. The goal of this section is to transform the static
SDN into a dynamic one. To this end, we have to carry out the following steps:

1. Add a new signature to represent different time instants in the model.

2. Identify the model relations that could change over time (as a result of some
action), and extend their definitions adding a component.

3. Modity accordingly the facts that deal with the relations extended with time.

4. Define predicates that implement the actions that can change the model.

5. Define predicates (called frame conditions) that specify the part of the model
that does not change when an action is carried out.

Actas XXVI JCSD 76 Zaragoza, 19-21 de Junio de 2019

10 M.M. Gallardo & L. Panizo

connected connected

outputBuffer

ports

Fig. 4: Instance of the ALLOY model

open util/ordering[Time]
sig Time{}

one sig Controller extends Node{}
sig Host extends Node{
iBuffer: DataPacket set -> Time,
oBuffer: DataPacket set -> Time
¥
sig Switch extends Node{
table: Rule set -> Time
¥
abstract sig Packet{
position: Port lone -> Time

}

Listing 1.5: Signatures and relations extended with time

5.1 Extension of relations with Time

Listing 1.5 introduces the new signature and transforms binary relations
position |, | iBuffer |, | oButfer | and [table | into ternary adding a new time component.
These are the only relations whose values could change during the evolution of
a SDN. In the model, operator is the cartesian product of sets. Now, the
elements of each of these relations are 3-tuples. For instance, | (Packet1,Port0, Tine0) |,
[(Packett,Port1,Timet) | could be elements .

The use of the time component in tuples allows a packet to be on different
ports at different time instants. Thus, | (Packet1,Port0,Tine0) |and | (Packett,Portt, Tinet) |
mean that is placed at port [Porto] in time instant [Timeo], but it is in
in [Timet | The extension of the other relations work similarly. Thus, the
new ternary relation [tabie] allows the routing tables to change over time, and
s0 on. Line [open util/ordering[Tine] | is used to import the ALLOY library
that gives a total order to atoms of [Tine .

Actas XXVI JCSD 77 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy

11

//15-at most omne packet in a port
all t:Time, p: Port| lone (position.t).p
//16-data packets are
all t:Time, pk:DataPacket|
(one (iBuffer+oBuffer).t.pk)
//17- Datalink contains only DataPackets
all t:Time, 1l:DatalLink |
//18- CtrLinks contains only CtrPackets
all t:Time, l:CtrLink |1.(pl+p2)
//21- A CtrPacket with a new rule
all t:Time, pack:CtrPacket|

arrives

//22- A CtrPacket with a request arrives

all t:Time, pk:CtrPacket]|

//23- iBuffer is well defined
all t:Time, h:Host|
(no pk.position.t) and pk.dest

//24 oBuffer <s well defined
all t:Time, h:Host|
(no pk.position.t) and pk.src
//25- Packets in an oBuffer can reach the

well placed at ports or buffer hosts
(one pk.position.t) or
1.(pl+p2) [position.t]
[position.t]
(one pk.position.t & Switch.ports)
to a Controller port
(one pk.position.t & Controller.ports)

h.iBuffer.t in {pk:DataPacket|

h.oBuffer.t in {pk:DataPacket|

in DataPacket

in CtrPacket

to a Switch port

implies one pk.newRule
implies one pk.request

h}

h}

destination host

all t:Time, h:Host, pk:h.iBuffer.t | pk.dest in reachableNodes [h]
//26-Each rule belongs to a table at most
all t:Time, r:Rule | lone table.t.r

//27-Each switch has at most one rule for each data type and iPort
all t:Time, s:Switch, disj rl,r2:s.table.tl|

rl.packetType != r2.packetType or ril.iPort != r2.iPort

//32-The iPort and oPort of the rules of a switch belongs to

all t:Time, s:Switch, r:s.table.t| node[r.(iPort + oPort)]

the switch
s

Y

Listing 1.6: Facts extended with time

5.2 Introducing time in facts

Listing 1.6 contains the facts of the static model (see Section 4) that have to
be modified taking the component into account. Observe that each fact
is universally quantificd with respect to [Time]. This means that the fact has to
be true at each time instant. In addition, the time variable is added at the new
ternary relations. For instance, fact 15 says that each port may have at most
a packet at each time instant. The time component is composed by the right
side of the relation (as in) because the time component is the last
one in the definition of relations. Observe that some facts are now a bit more
complicated, but the process of adding time to facts is quite automatic.

5.3 Definition of transitions

The following step to construct a dynamic model is to implement predicates
that define the model transitions. The header of predicates usually contains two
time parameters and that denote the time instants before and after the
predicate is executed. An ALLOY predicate is a sequence of constraints that are
added to the model only when the predicate is executed. Predicates must contain
three blocks of constraints: pre, post and frame conditions. The meaning of pre

Actas XXVI JCSD

78

Zaragoza, 19-21 de Junio de 2019

12 M.M. Gallardo & L. Panizo

pred discardPacket(t,t’:Time,s:Switch,pk:DataPacket){

//pre

some pk.position.t & s.ports

some r:s.table.t | r.action = Discard and r.iPort = pk.position.t and
r.packetType = pk.type

//post

pk.position.t’ = none

// frame

tablesUnmodifiedExc [none,t,t’] and packetsUnmodifiedExc[pk,t,t’]
oBuffersUnmodifiedExc [none,t,t’] and iBuffersUmnmodifiedExc[none,t,t’]
}
pred forwardPacket(t,t’:Time,s:Switch,pk:DataPacket){
//pre
some pk.position.t & s.ports
some r:s.table.t | r.packetType = pk.type and r.action = Forward and
r.iPort = pk.position.t
//post
let r = s.table.t & packetType.(pk.type) & action.Forward
& iPort.(pk.position.t),
p = remotePort[r.oPort] | pk.position.t’ = p
// frame
tablesUnmodifiedExc [none,t,t’] and packetsUnmodifiedExc[pk,t,t’]
oBuffersUnmodifiedExc [none,t,t’] and iBuffersUmnmodifiedExc[none,t,t’]

Listing 1.7: Predicates to discard and forward data packets in switches

and post conditions is the usual one. Frame conditions represent the part of the
model that is not changed by the predicate. Frame conditions are essential in
ALLOY, since the tool is free to modify any timed relation if the model does not
specify that it must not do it. Now, we list the predicates defined in the SDN
model to make packets and rules move during the network execution.

Listing 1.7 shows the conditions for a switch to discard a packet. The pre-
conditions are that, at instant [¢], the packet must be at a port of [s] and
that [s] has a rule in its routing table telling that packets arriving through this
port must be discarded. Post condition is that the packet has no position
at instant [+]. The keyword represents the empty set. The frame condi-
tions are four predicates that establish that the only network component that
changes during the transition is . The implementation of frame
conditions is given Listing 1.9. Each frame predicate corresponds to a relation
that may change over time.

Listing 1.7 also contains the implementation of the predicate that forwards a
packet from a switch using a rule. The preconditions are: at the time instant [«],
(1) is located at a port of [s], and (2) there is a rule [x] in the routing table
of the [s] with action that applies to packets with the packet type of
and input port the port in which is placed. Expression is used to define
bound variables that simplify the constraints. Thus, variable [r] represents the
rule of the routing table to be applied in the predicate, and [p|is the remote port
to which the packet is forwarded. Using these two variables, the postcondition
establishes that the position of , at time instant ¢], is [¢]

Listing 1.8 contains the predicate | sendPacket | and | receivePacket | The first one
specifies how a host [n] sends packet . The precondition is that is at

Actas XXVI JCSD 79 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy 13

pred sendPacket(t,t’:Time, h:Host, pack:DataPacket){

//pre

some pack & h.oBuffer.t

//post

some p’:remotePort[h.ports] | pack.position.t’=p’
h.oBuffer.t’ = h.oBuffer.t - pack

// frame

tablesUnmodifiedExcnone ,t,t’] and packetsUnmodifiedExc[pack,t,t’]
oBuffersUnmodifiedExc[h,t,t’] and iBuffersUnmodifiedExc[none,t,t’]

}
pred receivePacket(t,t’:Time,h:Host,pack:DataPacket){
//pre
some (pack.position.t & h.ports)
//post
h.iBuffer.t’ = h.iBuffer.t + pack
pack.position.t’ = none
//frame

tablesUnmodifiedExc [none,t,t’] and packetsUnmodifiedExc[pack,t,t’]
oBuffersUnmodifiedExc [none,t,t’] and iBuffersUnmodifiedExc[h,t,t’]

Listing 1.8: Predicates to send and receive data packets on hosts

pred packetsUnmodifiedExc(pp:set Packet, t,t’:Time){
all pk:Packet-pp | pk.position.t = pk.position.t’

}

pred oBuffersUnmodifiedExc (hh:set Host, t,t’:Time){
all h:Host-hh | h.oBuffer.t = h.oBuffer.t’

}

pred iBuffersUnmodifiedExc (hh:set Host, t,t’:Time){
all h:Host-hh | h.iBuffer.t = h.iBuffer.t’

}

pred TablesUnmodifiedExc(ss: set Switch, t,t’:Time){
all s:Switch - ss | s.table.t = s.table.t’

}

Listing 1.9: Frame conditions

the output buffer of at instant [¢]. The predicate has two postconditions:
at time instant [+], (1) is at the remote port of the link that connects [a]
with the SDN, and (2) the output buffer of |E| is equal to the output buffer at
excluding [pk]. The predicate defines how a host [x] receives a
packet . The precondition is that is at a port of [n] at instant [¢]. The
postconditions are that (1) is at the input buffer of [n], and (2) is at no
port, at time instant [+]
The model also contains the following predicates:

- |pred receiveRequest(t,t’:Time, ctrl:Controller, req:CtrPacket)l,tlle COIltrCﬂler receives
a request from a switch to know how to manage a data packet.

- |pred sendRequest (t,t’:Time, s:Switch, pk:DataPacket) |, switch [s] sends a request to
the controllr to know how to manage the data packet .

— |pred installRule (t,t’:Time, s:Switch, pk:CtrPacket) L SVVitCIl [:] receives a 0011trol
packet with a rule and installs in its routing table.

Actas XXVI JCSD 80 Zaragoza, 19-21 de Junio de 2019

14 M.M. Gallardo & L. Panizo

pred Configl (){

#Controller = 1 and #Host = 2 and #Switch>=2 and #DataPacket = 2
all p:Port| one linkl[p] //all ports are in a link

//all rules are different in the system/topology

no disj ri1,r2:Rule| rl.iPort = r2.iPort and ril.oPort = r2.oPort

and rl.action = r2.action and ril.packetType = r2.packetType

}

run Configl for 10

Listing 1.10: ALLOY predicates for configuration 1

6 Generation of Instances

ALLOY can run predicates and check assertions. In the first case, it finds out
whether the predicate is consistent and if so, it returns model instances that
satisfy the constraints (facts) and the predicate. These instances are very useful
to detect misunderstanding in the specification of the model. In the second case,
ALLOY looks for counterexamples that satisfy the model specification but not the
assertion. In both cases, the ALLOY model is transformed into a set of boolean
formulae that are analysed using a SAT solver.

In this section, we use the run and check approaches to generate instances
of the SDN model. First, we run different predicates, that we call configura-
tions, that constraint the topology (number of nodes controllers, hosts, and
switches), the traffic (number of packets), or the initial status of the routing
tables in the static and dynamic model. These predicates can be used to model
non-deterministic execution traces of the dynamic model. Then, we check some
assertions that prove properties of our model. If the properties are not satisfied,
ALLOY returns a counterexample. We have defined two different configurations:

- , in Listing 1.10, is targeted to produce instances of the static model
with one controller, two hosts, two or more switches, and two data packets. In
addition, all ports must be in a link and all rules are different. The keyword
run instructs ALLOY to execute with at most 10 atoms per signature.

- |Co_T;g_2, Listing 1.11, is targeted to generate instances of the dynamic model
in which a data packet is forwarded from the source to the destination host.

It extends configuration 1 with the state of the network at the first time

instant. The data packets are in the output buffer of the source host and

the switches’ tables have pre-installed all the necessary forwarding rules. In
addition, the predicate defines how the instances can non-deterministically
evolve over time. It is simulated with at most 10 atoms and 9 time instants.

ALLOY reports the number of variables and primary variables, clauses, the
time to transform the model into clauses, and the execution time of the SAT
solver. We have run ALLOY 4.2 in a MacBook Air Core i5 with 4GB of RAM.
By default, ALLOY uses 768MB of memory and 8192kB of stack size. Table 1
summarizes the results and the average execution time of the default SAT solver,
the SAT4J solver, calculated on 20 executions of each configuration. Figure 5
shows a simplified view of a network topology satisfying | contigt | To ease the

Actas XXVI JCSD 81 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy

15

pred initTopology(t:Time){

#Controller = 1 and #Host = 2 and #Switch>=2 and #DataPacket = 2
//all DataPackets are initially in the oBuffers of the hosts

all pk:DataPacket | pk in Host.oBuffer.t

//No CtrPackets in switches or controller ports
all pk:CtrPacket| pk.position.t= none

//all ports are in a link

all p:Port| one linkl[p]
//all switches has some pre-installed rules

all s:Switch| some s.table.t
//all forwarding rules are pre-installed

all r:Rule | r.action = Forward implies r in Switch.table.t
//all different in the system

no disj ri,r2:Rule | ri1.iPort = r2.iPort and rl.oPort = r2.oPort

and (ril.action = r2.action) and (ril.packetType = r2.packetType)

in TO

rules are

}
pred Config2(){
initTopology [first]
all t:Time-last| let t’= next[t]| ((some h:Host,
ctrl:Controller, ctrPk:CtrPacket]|
sendPacket [t,t’,h,pk] or receivePacket[t,t’,h,pk] or
forwardPacket [t,t’,s,pk] or discardPacket[t,t’,s,pk] or
installRule[t,t’,s,ctrPk] or sendRequest[t,t’,s,pk] or
receiveRequest [t,t’,ctrl,ctrPk]))

s:Switch, pk:DataPacket

1
run Config2 for 10 but 9 Time

Listing 1.11: ALLOY predicates for configuration 2

inspection of the results, ALLOY visualizer can project instances on a given
signature (such as [Tine]). Figure 6 shows an instance of in which we can
observe how the data packets change their position from time to m.
ALLOY can also check assertions to automatically determine whether all in-
stances satisfy a property. Listing 1.12 contains two desired properties for the
dynamic model given by . Property “for all time instants, there is no
control packet in the controller (input) ports” should hold, since switches should
not send requests to the controller (all rules were initially pre-installed). Prop-
erty “data packets should go from the source to the destination hosts” should
also hold. In both cases, ALLOY concludes that the assertion is never violated.

Configl|Config2

Table 1: ALLOY report

Vars 36,368(170,110
Primary vars 1,488| 4,799
Clauses 97,823|346,270
Exec. time(ms) 306 4,958 comnected connected

Fig. 5: Network topology

Actas XXVI JCSD

82

Zaragoza, 19-21 de Junio de 2019

16 M.M. Gallardo & L. Panizo

l ports

conneeted connected

outputBuffer

outputBuffer

Time$0

connected
inputBuffer

ports

position

Time$5

Fig. 6: Evolution over time of data packets

7 Conclusions and future work

In this paper, we have used ALLOY to describe the structure and dynamic be-
haviour of SDN. ALLOY is a declarative language based on sets, relations and
first-order logic, and a tool for the formal description and analysis of complex
systems. SDNs constitute a non-trivial example that shows the power of ALLOY
for the specification of software systems. On the one hand, it is a structurally
complex system containing several types of objects and relations. ALLOY proves
to be an excellent language for the modelling of the static component of software.
On the other, the dynamics of SDNs involves a series of operations to install and
uninstall rules on switches, and to distribute data and control packets through
the network. The concurrent and distributed execution of these operations may
entail many safety and liveness errors. This dynamics can also be implemented
and simulated in ALLOY. Although the model developed in this paper is quite
complete, it could be extended to incorporate other SDN desired properties. For
instance, we can define new predicates that model SDN apps; that is, applica-
tions that run concurrently on the controller, which dynamically decides how to
configure the data plane to achieve different objectives.

//Controller does mnot receive requests
assert noRequest{ Config2 implies all t:Time| no pk:CtrPacket]
one (pk.position.t & Controller.ports)}
check noRequest for 10 but 9 Time
//all data packets arrives to the destination host
assert packetArrival{ Config2 implies (some disj ti1, t2:Time|
all pk:DataPacket| (one pk & pk.src.oBuffer.tl) and
(one pk & pk.dest.iBuffer.t2)}
check packetArrival for 10 but 9 Time

Listing 1.12: Assertions

Actas XXVI JCSD 83 Zaragoza, 19-21 de Junio de 2019

Modelling Software-Defined Networks with Alloy 17
Bibliography

[1] E. M. Clarke, O. Grumberg & D. A. Peled (2000): Model Checking. The MIT
Press.

[2] Daniel Jackson (2006): Software Abstractions - Logic, Language, and Anal-
ysis. MIT Press. Available at http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=10928.

[3] L. Lavado, L. Panizo, M.M. Gallardo & Pedro Merino (2017):
A Characterisation of wverification tools for software defined mnet-
works. Journal of Reliable Intelligent Environments 3(3), pp. 189-207,
https://doi.org/https://doi.org/10.1007/s40860-017-0045-y.

[4] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang & Daniel Jackson (2017):
Alloy*: a general-purpose higher-order relational constraint solver. Formal
Methods in System Design, pp. 1-32, https://doi.org/10.1007 /s10703-016-
0267-2.

[5] B. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka & T. Turletti (2014):
A Survey of Software-Defined Networking: Past, Present, and Future of Pro-
grammable Networks. IEEE Communications Surveys Tutorials 16(3), pp.
1617-1634, https://doi.org/10.1109/SURV.2014.012214.00180.

Actas XXVI JCSD 84 Zaragoza, 19-21 de Junio de 2019

