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Abstract—Massive, green, soft and super-fast are the key
attributes that will describe next-generation mobile networks
(5G and beyond). Large millimeter-wave (mmWave) bandwidths,
massive MIMO antenna arrays, ultra-dense small cells (UDN)
and cloud radio access network (C-RAN), among others, will
enable these future networks to deliver huge performance gains.
Since the networks are anticipated to be green and the available
spectrum will be more abundant, energy efficiency (EE) becomes
a more critical design factor than spectral efficiency (SE). In
the face of competing potentials and challenges brought about
by the different enablers, efficient resource allocation (RA)
schemes are important to optimize system performance. In this
work, we propose a fully-adaptive RA for a dense, C-RAN-
enabled mmWave massive MIMO network. We then compare
its performance to a non-adaptive and two semi-adaptive RA
schemes. The fully-adaptive scheme outperforms all the other
RA schemes and shows promising potentials for the joint EE-SE
optimization of future mobile networks. Our results show the
optimal EE-SE points and the impact of the transmit power and
the number of data streams on the EE and SE performance.

Index Terms—5G, C-RAN, energy efficiency, massive MIMO,
mmWave, spectral efficiency.

I. INTRODUCTION

The future mobile networks are envisaged to be massive.
They will concurrently feature denser cells, larger bandwidths
and a higher number of antennas than legacy cellular networks.
Expectedly, they are anticipated to deliver huge performance
gains across all fronts [1]. This ambitious target requires the
massive networks to be green, soft and super-fast (i.e., energy-
efficient, self-organizing and high-rate, respectively). These
features will enable the networks to deliver optimal spectral
efficiency (SE) and energy efficiency (EE) [2]. However,
a joint optimization is very challenging, as a fundamental
tradeoff typically exists between both metrics. More so, the
large amount of network elements and radio resources involved
makes such optimization even more tasking.

No doubt, the foreseen massive networks will deliver
very high capacities. They will employ large millimeter-wave
(mmWave) bandwidths and the large-scale antenna arrays
(massive MIMO) to improve the networks’ SE. This will lead
to increased user throughputs in order to meet the skyrocketing
traffic demands and improve the users’ quality of experience
(QoE) [1], [3]. On the other hand, the denser small cells
(SCs) and the higher number of antennas in such networks
intuitively imply higher overall power consumption. This trend
therefore necessitates, more than ever before, the need for

energy-efficient design schemes that will minimize the power
consumption in order to lower the networks’ energy utilization
and carbon dioxide (CO2) gas emission footprints [4].

More so, the energy consumption and gas emissions of com-
munication networks are reaching alarming proportions, rep-
resenting 2-3% of worldwide energy usage. The radio access
networks (RANs) consume up to 70% of the total power of the
network [2], [4]. These statistics are concerning, particularly
from the perspectives of socio-economic and environmental
concerns (i.e., costs, revenues, health, safety, environment,
etc.). As a result, EE-SE co-design is a mandatory parameter
for next-generation mobile networks (5G and beyond) to be
viable and sustainable. It is, therefore, a critical component of
5G research [2].

For the overall improvement in system performance, all
the radio resources (i.e., power, space, time and frequency)
will have to be optimally utilized. Along this line, smart
resource allocation (RA) schemes that optimize the power,
spatial, temporal and spectral resources of the network have
been proposed, largely for legacy networks. Newer, optimal
RA schemes that consider the peculiar characteristics of prop-
agation at mmWave frequencies in massive MIMO-enabled
networks are, thus, subjects of active research. Among others,
channel sparsity, near-line-of-sight (near-LOS) propagation,
power and noise-limited operation are some of the features
of mmWave massive MIMO that distinguish it from the rich-
scattering, bandwidth-limited and interference-limited MIMO
networks at microwave (µWave) frequencies [1]. Accord-
ingly, the optimal 5G RA schemes aim to allocate the large
bandwidth (BW) or time-frequency resource blocks (RBs)
efficiently in the face of the power and noise limitations.

Many useful analyses and evaluations on optimal RA have
been undertaken for varied scenarios and applications. In
[5], the authors proposed an auction-based EE RA scheme
for vehicular heterogeneous networks (HetNets). The EE
RA schemes in [6] and [7] targeted device-to-device (D2D)
communications, based on energy harvesting and cooperative
relaying, respectively. Similar analysis has been done in [8]
for heterogeneous cloud radio access networks (H-CRAN).
These works provided efficient algorithms but did not con-
sider mmWave massive MIMO. In [9], the authors proposed
RA algorithms that maximize the proportional fairness (PF)
spectral efficiency in mmWave massive MIMO. The work
focused on SE and user fairness; it did not consider EE. User



association for joint SE-EE optimization was considered in
[10]. The scenario, however, was for mmWave backhaul small
cell (SC) networks.

In this work, we propose a novel fully-adaptive RA scheme
that optimizes the joint EE-SE performance of a mmWave
massive MIMO network. We compare the performance of the
algorithm with a non-adaptive and two semi-adaptive schemes.
Our system model features the partially/sub-connected hybrid
precoding (HP) [11] architecture and CRAN-based schedul-
ing. The simulations employ non-uniform cell load and
user distribution, realistic mmWave channel model [12] and
standard-compliant orthogonal frequency division multiplex-
ing (OFDM) frame structure for 5G new radio (NR) [13]. To
the authors’ best knowledge, this investigation is the first to
assess system-level performance using all the above-mentioned
features collectively for joint SE-EE optimization.

The remainder of this paper is organized as follows. In
Section II, we present the system model and describe the
network layout, channel model, antenna configurations and the
employed performance metrics. In Section III, we discuss the
four RA schemes and provide their algorithms. Results and
discussions follow in Section IV, while conclusion and the
future research direction are presented in Section V.

II. SYSTEM MODEL

This section describes the network model in terms of the de-
ployment scenario, antenna and propagation models employed
and the RA schemes investigated.

A. Network Deployment
We consider a single-cell architecture with a cluster of

J = 5 mmWave SCs deployed in an area of 200× 200m2 in
a downlink set-up. This represents a dense network as the
inter-site distance (ISD) is typically less than 100 m. The
clustered SCs are connected by wireless fronthaul to the C-
RAN for RA. The centralized scheduler controls the power
allocation and radio resource assignment for the cluster. All
the SCs and the user equipment (UEs) are randomly deployed,
as illustrated in the Voronoi diagram of Fig. 1. For each
simulation, 1000 random simulation runs (nRuns) with 100
channel realizations or transmission time intervals (nTTIs) per
run were undertaken. Thus, Fig. 1 is only a representative
layout out of many random possibilities.

The random deployment leads to irregular cell sizes and
varied user distributions as the SC-UE attachment is based
on the highest signal-to-noise-ratio (SNR) criterion. The lay-
out also affords the SCs with no load or attached users
to go into sleep mode thereby bringing additional energy
savings for the network. We consider an outdoor scenario with
(xSC , ySC , 10)m and (xUE , yUE , 1.5)m and assume LOS
environment. This assumption is valid as the transmission links
are most likely to be in LOS conditions for the outdoor, dense,
mmWave network considered [14].

B. mmWave Massive MIMO: Antenna and Channel Model
Massive arrays employing a dedicated radio frequency (RF)

chain per antenna element (i.e., digital precoding (DP)) will
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Fig. 1. Layout of Network Deployment

greatly increase the power consumption, cost, computational
complexity and signal processing demands of the network
[11]. Analog beamforming (AB), on the other hand, can not
provide the expected multiplexing gains. In response, HP
which effectively reduces the required number of transceivers
(or RF chains) without significant performance loss addresses
this challenge [1], [11], [15].

We, therefore, consider a massive MIMO model where each
SC in the cluster is equipped with a uniform planar array
(UPA) with N × M antenna elements along the y- and z-
axis, respectively. For the HP considered, N represents the
number of data streams (or employed RF chains NRF ) while
M denotes the number of antenna elements (along the vertical
or for each NRF ) used for beam steering. The array has
λ/2 inter-element spacing both in the horizontal and vertical
dimensions. On the other hand, single antenna elements are
considered for the UEs, such that the total number of users in
the network is K =

∑J
SC=1 KSC .

The sub-connected HP architecture with N RF chains and
NM phase shifters (PS) is employed. This is more energy-
efficient and easier to implement for mmWave massive MIMO
than the fully-connected HP architecture which requires N RF
chains and N2M PSs [11], [15]. The received signal vector
y = [y1, y2, ..., yK ]T at the users can be modeled as

y =
√
ρHADs+ n =

√
ρHPs+ n (1)

where ρ is the average received power, H ∈ CK×NM

denotes the channel matrix, A ∈ CNM×K and D ∈ CN×N

are the analog and digital precoder matrices, respectively.
P(= AD) ∈ CNM×N is the hybrid precoder matrix, while
s ∈ CK×1 and n ∈ CK×1 are the user data and noise vectors,
respectively.

The sum received power by a user k, P k
r,t is given as

P k
r,t = P l

TX ·GTX ·GRX · PL · SF · |hr,t|2 (2)



where P l
TX is the transmit power on the particular

layer/stream/TX-RX beam, GTX is the transmitter gain, GRX

is the receiver gain, PL is the path loss, SF is the shadow
fading loss and hr,t is the fast-fading [16].

The mmWave channel employed follows the implementa-
tion in [12]. It is a 3D statistical spatial channel model (SSCM)
which uses the time cluster-spatial lobe (TCSL) approach. We
consider a directional mmWave channel. The effective path
loss (PL and SF) is

PL = 20 log10

(
4πf

c

)
+ 10n̄ log10 d3D +Xσ (3)

where f is the carrier frequency, c is the speed of light, n̄ is
the path loss exponent (PLE), d3D is the BS-UE separation
distance and Xσ is the zero-mean log-normal random variable
(SF) with standard deviation σ [17], [18].

For each transmission link, the channel impulse response
(CIR) is generated for T time clusters (TCs) and S cluster
subpaths (SPs). The directional channel hdir for each TX-RX
pair can be presented as

hdir(t, ϕ, θ) =

T∑
t=1

St∑
s=1

as,te
jφs,t · δ(t− τs,t)

· gTX(ϕ− ϕs,t) · gRX(θ − θs,t)

(4)

where as,t, φs,t and τs,t represent the magnitude, phase
and propagation time delay of the sth SP for the tth TC,
respectively. ϕs,t and θs,t are the azimuth (A) and elevation/
zenith (Z) angles, respectively. They both denote the departure
angles at the BS (AoD, ZoD) and arrival angles at the UE
(AoA, ZoA), respectively. The directive antenna gains gTX

and gRX can be parameterized as

G(ϕ, θ) = max

(
G0e

αϕ2+βθ2

,
G0

100

)
(5)

α =
4 ln(2)

ϕ2
3dB

, β =
4 ln(2)

θ23dB
, G0 =

41253ξ

ϕ2
3dBθ

2
3dB

(6)

where G0 is the maximum directive boresight gain, α and
β depends on ϕ3dB and θ3dB which are the azimuth and
elevation half power beamwidths (HPBW), respectively, and
ξ is the average antenna efficiency [17], [18].

The standard-compliant frame structure OFDM numerology
for 5G/NR (mode 3) is employed. The maximum number of
RBs (B) is 275 where a unit RB (W ) is 1.44MHz. Therefore,
the maximum supported bandwidth B ·W = 396MHz [13].

C. Performance Metrics

The cell throughput/sum data rate R is measured in “bits
per second [b/s]”. SE is the “throughput per unit spectrum
[(b/s)/Hz]” while EE is evaluated in “bits per unit Joule
[b/J ]” [19]. Equations (7) and (8) establish R’s relationship
with SE and EE, respectively.

SE =
Throughput (R)

Bandwidth (B ·W )
(7)

TABLE I
KEY SIMULATION PARAMETERS

Parameter Value Parameter Value
f 28 GHz BW [13] 396 MHz

X(µ, σ) (0,7) dB B [13] 275 RBs
c 3× 108 n̄ [12] 2
No -174 dBm/Hz ϕdB(SC) [12] 10o

NF 7 dB θdB(SC) [12] 10o

PTX [0-35] dBm ϕdB(UE) [12] 10o

K [40, 80] θdB(UE) [12] 10o

NM 64 ξ [17] 0.7
N [1-64] PRF [11] 250 mW
M [64-1] PPS [11] 1 mW

nRuns 1000 LCD [14] 100 mW/(Gb/s)
nTTIs 100 LBH [14] 250 mW/(Gb/s)

EE =
Throughput (R)

Consumed Power (Ptotal)
(8)

For the considered network architecture, the throughput, R
and the power consumption model, Ptotal can be modeled as:

R =

J∑
j=1

Kj∑
k=1

Bj,kW · log2 (1 +
P k
TX · hl

j,k

No ·Bj,kW ·NF
) (9)

Ptotal =

transmit︷︸︸︷
PTX +

circuit (static)︷ ︸︸ ︷
N · PRF +N ·M · PPS

+R (LCD + LBH︸ ︷︷ ︸
circuit (dynamic)

)
(10)

where No is the noise power spectral density, NF is the
noise figure, PTX is the transmitted/radiated power, PRF and
PPS represent the power consumed by each RF chain and PS,
respectively. The PPS includes power consumed for excitation
and insertion loss compensation [11]. R is the throughput;
LCD is the power consumed for coding per b/s and LBH is
the power used for backhauling per b/s [14]. The values for
the key system parameters are presented in Table I.

III. RESOURCE ALLOCATION (RA) SCHEMES

Optimal RA scheme for dense networks requires a
panoramic view of the load and traffic demands in the en-
tire network for efficient scheduling. C-RAN enables self-
organizing network (SON) which can adapt the RA for load
balancing, interference mitigation, energy savings and overall
network optimization. More so, SON will be mandatory in
5G, unlike in 4G systems where it is an optional feature.
With the expected reduction in power consumption and cen-
tralized/dynamic RA, HP and C-RAN will enable the EE-SE
joint optimization for the envisioned green, soft and super-fast,
massive 5G networks.

We consider four RA schemes, as shown in Algorithm 1.
The outputs from the algorithm are the powers, P k

TX and
the number of RBs, Bj,k assigned to each user k. Scheme-
I serves as the baseline where the RBs are homogeneously
(i.e., almost-equally) assigned to the SCs irrespective of the
SC load, and homogeneously allocated to the users irrespective



of their cell loads. In addition, equal layer power assignment
is adopted regardless of the channel conditions. The semi-
adaptive Scheme-II adapts the RB assignment based on the
number of users attached to each SC. Per-layer power al-
location is homogeneous (i.e., equal and independent of the
channel).

For the semi-adaptive Scheme-III, per-layer power alloca-
tion is proportional to the channel gains but RB assignment
per SC is homogeneous regardless of the cell load. Finally, we
then propose the fully-adaptive Scheme-IV which adapts both
the power and RB assignment. Here, per-layer or per-beam
power to a user terminal is proportional to its channel strength
and per-SC RB assignment is relative to the number of users
attached to each cell. Unlike Scheme-I, the semi-adaptive and
fully-adaptive schemes enable SCs to go into sleep mode when
they have no attached users. This facilitates additional energy
savings from the sleeping nodes.

IV. SIMULATION RESULTS

In this section, we present the simulation results for the four
RA schemes as described in Section III. With the emphatic
interest on EE for sustainable future mobile networks, our
evaluation seeks to identify the optimal PTX , NRF and EE-SE
tradeoff points.

A. Optimal Transmit Power

The EE and SE performance with respect to the PTX for the
four RA schemes are shown in Fig. 2. For all cases, the results
show that SE increases as PTX increases for the considered
power range. It is instructive to note that this trend is due to the
fact that interference-free set-up is considered by employing
precoding and disjoint RB assignment. There is no interference
among the SCs within a cluster. Therefore, SINR reduces to
SNR.

The EE performance has a different trend as also shown
in Fig. 2. It first increases, peaks at the optimal PTX and
then continues to degrade thereafter. Two sets of points are
noteworthy from the EE curves. The first set, for all RA
schemes, appears at PTX = 20 dBm for the considered
scenario. This point gives the maximum EE, but reduced SE.
The second set of points is where the EE and SE curves
intersect (with PTX between 25 and 27 dBm for all schemes).
These points are the optimal points that jointly optimize both
the EE and SE for the considered scenario.

With respect to the RA schemes, the fully-adaptive Scheme-
IV outperforms all the others, as an adaptation to both channel
conditions and cell load is enabled. Scheme-III has the worst
performance. Homogeneous RBs corresponds to equal noise
level (which is dependent on BW) in each channel. Adapting
the power proportional to the channel gains enhances the good
channels and degrades the performance of the weak channels.
This leads to the overall reduction in the sum performance
as compared to others. Comparison of the performance of
schemes I-III show that RB adaptation is of more significance
than power adaptation for the downlink while adaptation of
both power and RB (Scheme-IV) gives the best result.

Algorithm 1: Resource Allocation (RA) Schemes
Inputs :

1 J = {1, 2, ..., J} : SCs
2 KJ = {1, 2, ...,Kj}, ∀j ∈ J : UEs per SC
3 K =

∑J
j=1 Kj : Total UEs (for all SCs)

4 B =
∑J

j=1

∑Kj

k=1 Bj,k: Total RBs (for all SCs)
5 L = {1, 2, ..., L} : Number of layer per SC
6 PTX =

∑L
l=1 P

l
TX : TX power per SC

7 |hj
l,k| : Channel gain (for each user k)

Outputs:
8 P k

TX : Power allocation per user
9 Bj,k : RB allocation per user

10 for j → 1 to J do
11

χj,k (ςn) =

1, ∀k ∈ L (∀n assigned to k)

0, otherwise

Scheme-I: Homogeneous P k
TX and Bj,k

12 Bj = Q = B
J ; bn = 0

13 while bn < Bj and Q > 0 do
14 bn = bn + 1; Q = Q− 1
15 Assign(bn → Kmod(Q,Kj)+1)

16 for k → 1 to Kj do
17 P k

TX = χj,k
PTX

L

18 Bj,k = ςn
∑Bj

n=1 bn

19 Scheme-II: Homogeneous P k
TX , Adaptive Bj,k

20 Bj =
Kj

K ×B
21 for k → 1 to Kj do
22 P k

TX = χj,k
PTX

L

23 Bj,k =
|hj

l,k|∑Kj
k=1 |hj

l,k|
×Bj

24 Scheme-III: Adaptive P k
TX , Homogeneous Bj,k

25 Bj = Q = B
J ; bn = 0

26 while bn < Bj and Q > 0 do
27 bn = bn + 1; Q = Q− 1
28 Assign(bn → Kmod(Q,Kj)+1)

29 for k → 1 to Kj do

30 P k
TX = PTX · |hj

l,k|∑Kj
k=1 |hj

l,k|
· hk

31 Bj,k = ςn
∑Bj

n=1 bn

32 Scheme-IV: Adaptive P k
TX and Bj,k

33 Bj =
Kj

K ×B
34 for k → 1 to Kj do

35 P k
TX = PTX · |hj

l,k|∑Kj
k=1 |hj

l,k|
· hk

36 Bj,k =
|hj

l,k|∑Kj
k=1 |hj

l,k|
×Bj
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B. Sufficient Number of RF Chains/Data Streams

In terms of power consumption, AB and DP represent the
two extreme cases. AB consumes the least power for single
stream transmission. DP, on the other hand, consumes the most
by employing RF chains/data streams equal to the number
of antenna elements. For massive MIMO arrays, HP offers a
significant reduction in the number of required RF chains and
the associated energy consumption and cost (when compared
with DP), yet achieving near-optimal performance.

Fig. 3 shows the EE performance as a function of the
required number of RF chains or data streams (N). For
each SC, NM = 64, N = [1, ..., 64] and K = 8 on the
average. Two sets of plots are shown: PTX = 20 dBm and
PTX = 30 dBm. The trend in both sets are similar. However,
the plot for PTX = 20 dBm has EE performance gain of 0.1
Gb/J for all RA schemes considered. Recall that, in Fig. 2
of subsection IV-A, PTX = 20 dBm is the optimal transmit
power for the considered network, hence the performance gain
over the plots for PTX = 30 dBm which is suboptimal for the
scenario under consideration.

In addition, Fig. 3 also shows that the EE performance
saturates from around N = 16 for both power sets and all RA
schemes. For the set-up, K = 8 in each cell, on average. This
shows that RF chains equal to twice the number of served
antennas per cell (i.e., N = 2K) is sufficient for optimal
operation as the EE saturates beyond this point. Additional
data streams do not bring any benefit in terms of EE.

Similarly, Fig. 4 shows the EE performance as a function
of NRF for K = 8 and K = 16. For both cases, PTX =
30 dBm. The plots again buttress the deduction that N =
2K is sufficient for optimal operation. The EE performance
saturation begins at N = 16 when K = 8, and at N = 32
when K = 16.
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C. EE-SE Performance Tradeoff

Fig. 5 shows the EE-SE performance curve for the con-
sidered network. For each RA scheme, the curve shows that
EE first starts to increase as SE increases. It then reaches the
optimal point. Beyond this point, the EE begins to degrade
though the SE continues to increase. For green mmWave
massive MIMO systems where EE is a critical factor, it is
desirable not to operate beyond the optimal EE point. As
shown in Fig. 5, Scheme-IV again outperforms all the other
schemes for the same reasons explained in subsection IV-A. It
achieves both higher EE and SE at the optimal points than the
other schemes due to the full adaptation of RB assignment to
the cell load and the full adaptation of power to the channel
conditions.

The EE-SE performance curve is shown in Fig. 5. The trend
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is consistent with results in [2], [4], [15], [19]. On the quasi-
concave nature of the curves, [19] established that the trend
is due to the impact of the static circuit power. Recall that
the power model in (10) consists of the transmit power, the
dynamic circuit power (that scales with the throughput) and the
static circuit power (which is independent of the data rate, SE
and BW of the network). The static power plays a pivotal role
in shaping the EE-SE tradeoff relationship. Finding the optimal
EE and SE is fundamental to realizing green 5G networks.

V. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that a fully-adaptive RA
scheme provides better EE performance than semi-adaptive
and non-adaptive RA schemes. We have also shown that data
streams or RF chains equal to twice the number of receive
antennas are sufficient for energy-efficient mmWave massive
MIMO network. This realization reduces the number of re-
quired RF chains and, correspondingly, the power consumption
in the system. A fully-adaptive RA, therefore, provides the
framework to dynamically turn on the required number of
streams/layers. This can bring additional energy savings and
overall improvement in EE, as amply shown in the results.
Using the EE-SE performance curve, our results also reveal
the optimal operating point of the system desirable for the
operation of green mobile networks of the future. Extension
of this work to multi-cell scenarios is the direction for future
work.
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